Preferences help
enabled [disable] Abstract
Number of results
2018 | 94 | 2 | 115-130
Article title

Scleroderma citrinum melanin: isolation, purification, spectroscopic studies with characterization of antioxidant, antibacterial and light barrier properties

Title variants
Languages of publication
The aim of this study was to isolate and evaluate biological properties of raw and purified melanins isolated from Scleroderma citrinum. Native melanin was isolated from the gleba of fresh S. citrinum fruiting bodies by alkaline extraction. Obtained pigment was purifed by acid hydrolysis and washed by organic solvents. Chemical tests, FT-IR and Raman spectroscopy analysis were conducted to determine the melanin nature of the isolated pigments. UV-Vis, transmittance, total polyphenolic content and colour properties were evaluated. Antioxidant activity was determined using ABTS and antibacterial activity by a well diffusion method. The results of the study demonstrated that melanins isolated from S. citrinum had antioxidant, light barrier and antibacterial properties. A purified form of melanin offered better light properties and higher antioxidant activity than the raw form. Both melanins inhibited the growth of E. facealis and P. aeruginosa. This study revealed that S. citrinum may be considered as a promising source of natural melanin. Isolated pigments presented all the physical and chemical properties common to natural and synthetic melanins. Raw and purified melanins showed differences in chemical composition, antioxidant activity and light barrier properties. Results suggest that, melanins from S. citrinum possess remarkable therapeutic action and could be applied in the food, cosmetics and pharmaceutical industries.
Physical description
  • [1] Gurgel FE, Silva BDB, Baseia IG. New records of Scleroderma from Northeastern Brazil. Mycotaxon 2008, 105, 399-405.
  • [2] Sims KP, Watling R, Jeffries P. A revised key to the genus Scleroderma. Mycotaxon 1995, 56, 403-420.
  • [3] Montager DF, Coelho G, Silveira AO, Baldoni DB, Antoniolli ZI. Morphological and molecular analyses in Scleroderma (Basidiomycota) associated with exotic forests in Pampa biome, southern Brazil. Mycosphere 2015, 6(3), 337-344, DOI: 10.5943/mycosphere/6/3/9.
  • [4] Ghate SD, Sridhar KR, Karun NC. Macrofungi of the coastal sand dunes of south-western India. Mycosphere 2014, 5(1), 144-151, DOI: 10.5943/mycosphere/5/1/6.
  • [5] Pandey N, Budhathoki U. Protein determination through Bradford’s method of nepalese mushroom. Scientific World 2007, 5(5), 85-88, DOI: 10.3126/sw.v5i5.2662.
  • [6] Kumla J, Suwannarach N, Bussaban B, Lumyong S. Scleroderma suthepense, a new ectomycorrhizal fungus from Thailand. Mycotaxon 2013, 123, 1-7, DOI: 10.5248/123.1.
  • [7] Yousaf N, Khald AN, Niazi AR. New records of Scleroderma species (Sclerodermataceae, Agaricomycetes) from Pakistan. Mycotaxon 2012, 122, 43-50, DOI: 10.5248/122.43.
  • [8] Zhang C, Xu X, Liu J, He M, Wang W, Wang Y, Ji K. Scleroderma yunnanense, a new species from South China. Mycotaxon 2013, 125, 193-200, DOI: 10.5248/125.193.
  • [9] Van der Sar SA, Blunt JW, Cole ALJ, Din LB, Munro MHG. Dichlorinated pulvinic acid derivative from a Malaysian Scleroderma sp. J Nat Prod 2005, 68(12), 1799-1801, DOI: 10.1021/np0503395.
  • [10] Mahmoud YAG, Amer SM, El-Souod SM. Cadmium, lead and zinc contents of sporocarps of some basidiomycetous fungi within gharbia governorate, Egypt. New Egyptian Journal of Microbiology 2007, 17(2), 89-94, DOI: 10.4314/nejmi.v17i1.40317.
  • [11] Hubregtse J. Fungi in Australia, Rev 2.0; 2017.
  • [12] Falandysz J. Mercury in mushrooms and soil of the Tarnobrzeska Plain, south-eastern Poland. Journal of Enviornmental Science and Health, Part A 2002, 37(3), 343-352, DOI: 10.1081/ESE-120002833.
  • [13] Mrak T, Kühdorf K, Grebenc T, Štraus I, Münzenberger B, Kraigher H. Scleroderma areolatum ectomycorrhiza on Fagus sylvatica L. Mycorrhiza 2017, 27(3), 283-293, DOI: 10.1007/s00572-016-0748-6.
  • [14] Guzmán G, Cortés-Pérez A, Guzmán-Dávalos L, Ramírez-Guillén F, del Refugio Sánchez-Jácome M. An emendation of Scleroderma, new species, and review of the known species in Mexico. Revista Mexicana de Biodiversidad 2013, 173-191, DOI: 10.7550/rmb.31979.
  • [15] Rusevska K, Karadelev M, Phosri C, Dueñas M, Watling R, Martín F. Rechecking of the genus Scleroderma (Gasteromycetes) from Macedonia using barcoding approach. Turk J Botany 2014, 38, 375-385, DOI: 10.3906/bot-1301-36.
  • [16] Nouhra ER, Caffot MLH, Pastor N, Crespo EM. The species of Scleroderma from Argentina, including a new species from the Nothofagus forest. Mycologia 2012, 104, 488-495, DOI: 10.3852/11-082.
  • [17] Wei Y, Gao JM, Hao SH, Zhang X. Insecticidal activity of basidiomycete Scleroderma citrinum. Acta Botanica Boreali Occidentalica Sinica 2005, 25(2), 382-385.
  • [18] Soytong K, Sibounnavong P, Kanokmedhakul K, Kanokmedhakul S. Biological active compounds of Scleroderma citrinum that inhibit plant pathogenic fungi. International Journal of Agricultural Technology 2014, 10(1), 79-86.
  • [19] Mohan V, Nivea R, Menon S. Evaluation of ectomycorrhizal fungi as potential bio-control agents against selected plant pathogenic fungi. JAIR 2015, 3(9), 408-412.
  • [20] Kanokmedhakul S, Kanokmedhakul K, Prajuabsuk T, Soytong K, Kongsaeree P, Suksamrarn A. A bioactive triterpenoid and vulpinic acid derivatives from the mushroom Scleroderma citrinum. Planta Med 2003, 69(6), 568-571, DOI: 10.1055/s-2003-40639.
  • [21] Winner M, Giménez A, Schmidt H, Sontag B, Steffan B, Steglich W. Unusual pulvinic acid dimers from the common fungi Scleroderma citrinum (common earthball) and Chalciporus piperatus (peppery bolete). Angew Chem Int Ed Engl 2004, 43(14), 1883-1886, DOI: 10.1002/anie.200352529.
  • [22] Loderer Ch, Ansorge-Schumacher MB. Magic mushrooms: screening for novel biocatalyst in the phylum Basidiomycota. Advances in Bioscience and Biotechnology 2016, 7, 446-453, DOI: 10.4236/abb.2016.711043.
  • [23] Velíšek J, Cejpek K. Pigments of higher fungi: a review. Czech J Food Sci 2011, 29(2), 87-102.
  • [24] Mbonyiryivuze A, Nuru ZY, Ngom BD, Mwakikunga B, Dhlamini SM, Park E, Maaza M. Morphological and Chemical Composition Characterization of Commercial Sepia Melanin. AJN 2015, 3(1), 22-27, DOI: 10.12691/ajn-3-1-3.
  • [25] Cuevas-Juárez E, Yuriar-Arredondo KY, Pío-León JF, Montes-Avila J, López-Angulo G, Díaz-Camacho SP, Delgado-Vargas F. Antioxidant and α-glucosidase inhibitory properties of soluble melanins from the fruits of Vitex mollis Kunth, Randia echinocarpa Sessé et Mociño and Crescentia alata Kunth. J Funct Foods 2014, 9, 78-88, DOI: 10.1016/j.jff.2014.04.016.
  • [26] Kurian NK, Nair HP, Bhat SG. Melanin producing Pseudomonas stutzeri BTCZ10 from marine sediment at 96 m depth (Sagar Sampada cruise #305). Int J Curr Biotechnol 2014; 2(5): 6-11.
  • [27] El-Naggar E-N, El-Ewasy SM. Bioproduction, characterization, anticancer and antioxidant activities of extracellular melanin pigment produced by newly isolated microbial cell factories Streptomyces glaucescens NEAE-H. Scientific Reports 2017, 7, 1-19, DOI: 10.1038/srep42129.
  • [28] Łopusiewicz Ł. Isolation, characterisation and biological activity from Exidia nigricans. World Scientific News 2018, 91, 111-129.
  • [29] Suryanarayanan T, Ravishankar J, Venkatesan G, Murali T. Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Myc Res 2004, 108(8), 974-978, DOI: 10.1017/S0953756204000619.
  • [30] Solano F. Melanins: skin pigments and much more – types, structural models, biological functions, and formation routes. New Journal of Science 2014, DOI: 10.1155/2014/498276.
  • [31] Zhan F, He Y, Zu Y, Li T, Zhao Z. Characterisation of melanin isolated form a dark septate endophyte (DSE), Exophiala pisciphila. World J Microbiol Biotechnol 2011, 27, 2483-2489, DOI: 10.1007/s11274-011-0712-8.
  • [32] Yao Z, Qi J, Wang L. Isolation, Fractionation and Characterization of Melanin-like Pigments from Chestnut (Castanea mollissima) Shells. J Food Sci 2012, 77, 671-676, DOI: 10.1111/j.1750-3841.2012.02714.x.
  • [33] Selvakumar P, Rajasekar S, Periasamy K, Raaman N. Isolation and characterization of melanin pigment from Pleurotus cystidiosus (teleomorph of Antromycopsis macrocarpa). World J Microbiol Biotechnol 2008, 24, 2125-2131, DOI: 10.1007/s11274-008-9718-2.
  • [34] Huang Z, Lui H, Chen MXK, Alajlan A, McLean DI, Zeng H. Raman spectroscopy of in vivo cutaneous melanin. J Biomed Opt 2004, 9, 1198-1205, DOI: 10.1117/1.1805553.
  • [35] Galván I, Jorge A, Ito K, Tabuchi K, Solano F, Wakamatsu K. Raman spectroscopy as non-invasive technique for quantification of melanins in feathers and hairs. Pigment Cell Melanoma Res 2013, 26, 1-7, DOI: 10.1111/pcmr.12140.
  • [36] Toledo AV, Franco MEE, Lopez SMY, Troncozo MI, Saparrat MCN, Balatti PA. Melanins in fungi: Types, localization and putative biological roles. Physiol Mol Plant Pathol 2017, 99, 2-6, DOI: 10.1016/j.pmpp.2017.04.004.
  • [37] Fogarty RV, Tobin JM. Fungal melanins and their interactions with metals. Enzyme Microb Technol 1996, 19, 311-317, DOI: 10.1016/0141-0229(96)00002-6.
  • [38] Eisenman HC, Casadevall A. Synthesis and assembly of fungal melanin. Appl Microbiol Biotechnol 2012, 93, 931-940, DOI: 10.1007/s00253-011-3777-2.
  • [39] d’Ischia M, Wakamatsu K, Napolitano A, Briganti S, Garcia-Borron J-C, Kovacs D, Meredith P, Pezzella A, Picardo M, Sarna T, Simon JD, Ito S. Melanins and melanogenesis: methods, standards, protocols. Pigment Cell Melanoma Res 2013, 26, 616-633, DOI: 10.1111/pcmr.12121.
  • [40] Różanowska M, Sarna T, Land EJ, Truscott TG. Free radical scavenging properties of melanin: interaction of eu- and pheo-melanin models with reducing and oxidizing radicals. Free Radic Biol Med 1999, 26, 518-525, DOI: 10.1016/S0891-5849(98)00234-2.
  • [41] Hung Y-Ch, Sava V, Makan S, Chen Tz-HJ, Hong M-Y, Huang GS. Antioxidant activity of melanins derived from tea: comparision beteen different oxidative states. Food Chem 2002, 78, 233-240, DOI: 10.1016/S0308-8146(01)00403-4.
  • [42] Helan Soundra Rani M, Ramesh T, Subramanian J, Kalaiselvam M. Production and Characterization of Melanin Pigment from Halophilic Black Yeast Hortaea werneckii. IJPRR 2013, 2, 9-17.
  • [43] Laxmi M, Kurian NK, Smitha S, Bhat SG. Melanin and bacteriocin from marine bacteria inhibit biofilms of foodborne pathogens. Indian J Biotechnol 2016, 15, 392-399.
  • [44] Xu C, Li J, Yang L, Shi F, Yang L, Ye M. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 2017, 73, 1445-1451, DOI: 10.1016/j.foodcont.2016.10.048.
  • [45] Correa N, Covarrubias C, Rodas PI, Hermosilla G, Olate VR, Valdés C, Meyer W, Magne F, Tapia CV. Differential Antifungal Activity of Human and Cryptococcal Melanins with Structural Discrepancies. Front Microbiol 2017, 8, 1-13, DOI: 10.3389/fmicb.2017.01292.
  • [46] Bin L, Wei L, Xiaohong Ch, Mei J, Mingsheng D. In vitro antibiofilm activity of the melanin from Auricularia auricula, an edible jelly mushroom. Annals of Microbiology 2012, 62(4), 1523-1530, DOI: 10.1007/s13213-011-0406-3.
  • [47] Zhu H, He C-C, Chu Q-H. Inhibition of quorum sensing in Chromobacterium violaceum by pigments extracted from Auricularia auricular. Letters in Applied Microbiology 2011, 52(3), 269-274, DOI: 10.1111/j.1472-765X.2010.02993.x.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.