PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 56 | 110-120
Article title

The Biomass of the Earth as the Direct Energy-Mass Equivalence from ~3.5 Billions of Years of Solar Flux

Content
Title variants
Languages of publication
EN
Abstracts
EN
Life is considered to be quantitative phenomena based upon principles derived from Astronomy, Physics, and Chemistry. The mass equivalence of the total energy from the Sun that occurred over the terrestrial surface from 3.5 billions ago to present is within the range of empirical estimations for the total biomass on the Earth. If the mass of living systems is the converted photon energy integrated over time then the ubiquitous emissions of photons in the order of picoWatts per square meter may not be a metabolic artifact but a reflection of the matter’s origin. Quantification demonstrates this magnitude of photon flux density is an expected dissipation from the photon-mass conversion that defines living systems. Because all energy, particularly photons, within Life on this planet originated from the Sun their maintenance as Popp (virtual) photons creates the conditions for non-local effects between solar activity and Life. The occurrence of entanglement between solar-terrestrial photons could alter the models, mechanisms, and attributions for the persistent and multiple correlations between solar activity and the phenomena measured within various levels of discourse from physical chemistry to large groups of organisms.
Discipline
Year
Volume
56
Pages
110-120
Physical description
References
  • [1] E. Schrödinger, What is Life? Cambridge University Press 1948.
  • [2] A. I. Oparin, The Origin of Life, Dover Publications 1965.
  • [3] D. A. Neufeld, S. L. Snell, M. L. M. Ashby, E. A. Bergin, G. Chin et al, The Astronomical Journal 539 (2000) L107-L110.
  • [4] A. W. Schwartz, C. G. Bakker, Science 245 (1989) 1102-1104.
  • [5] F. Hoyle, N. C. Wickramasinghe, Diseases from Space, J. M. Dent and Sons 1979.
  • [6] S. L. Miller, Science 117 (1953) 528-533.
  • [7] A. P. Johnson, H. J. Cleaves, J. P. Dworkin, D. P. Glavin, A. Lazcano, J. L. Bada, Science 322 (2008) 404.
  • [8] F. E Cole and E. R. Graf, in M. A. Persinger (Ed), ELF and VLF Electromagnetic Field Effects, Plenum Press 1974, pp. 243-274.
  • [9] F. A. Popp Photon Storage in Biological Systems. Electromagnetic Information Urban and Schwarzenberg 1979, pp. 123-149.
  • [10] A. A. Gurwitsch, Experientia 44 (1988) 545-549.
  • [11] W. B. Whitman, D. C. Coleman, W. J. Wiebe, Proceeding of the National Academy of Sciences of the United States of America 92 (1998) 6578-6583.
  • [12] M. V. Trushin, Microbiological Research 159 (2004) 1-10.
  • [13] D. Fels, PLoS ONE 4 (2009) e5086.
  • [14] I. Cosic, IEEE Transactions on Biomedical Engineering 41 (1994) 1101-1114.
  • [15] B. T. Dotta, N. J. Murugan, L. M. Karbowski, R. M. Lafrenie, M. A. Persinger, Naturwissenschaften 101 (2014) 87-94.
  • [16] B. T Dotta, C. A. Buckner, D. Cameron, R. M. Lafrenie, M. A. Persinger, General Physiology and Biophysics 30 (2011) 301-309.
  • [17] R. N. Tilbury, T. I. Quickenden, Photochemistry and Photobiology 47 (1988) 145-150.
  • [18] M. Kobayashi, M. Takeda, T. Sato, Y. Yamazaki, K. Kaneko, K. Ito, H. Kato, H. Inaba, Neuroscience Research 34 (1999) 103-113.
  • [19] B. T. Dotta, K. S. Saroka, M. A. Persinger, Neuroscience Letters 513 (2012) 151-154.
  • [20] L. S. Brizhik, E. Del Giudice, F.-A. Popp, W. Maric-Oehler, K.-P. Schlebusch, Electromagnetic Biology and Medicine 28 (2009) 28-40.
  • [21] M. A. Persinger, International Letters of Chemistry, Physics and Astronomy 61 (2015) 94-100.
  • [22] M. A. Persinger, S. A. Koren, G. F. Lafreniere, NeuroQuantology 6 (2008) 262-271.
  • [23] M. A. Persinger, Current Medicinal Chemistry 17 (2010) 3094-3098.
  • [24] G. Gu, Y. Xie, H. F. Schaefer III, Nucleic Acids Research 35 (2007) 5165-5172.
  • [25] E. Del Giudice, G. Preparata, Journal of Biological Physics 20 (1994) 105-116.
  • [26] N. J. Murugan, L. M. Karbowski, M. A. Persinger, Medicine and Biology (in submission),
  • [27] M. A. Persinger, B. T. Dotta, K. S. Saroka, World Journal of Neuroscience 3 (2013) 10-16.
  • [28] A. Alonso, R. Klink, Journal of Neurophysiology 70 (1993) 128-143.
  • [29] M. A. Persinger, Entropy 17 (2015) 6200-6212.
  • [30] S. D. Ganichev, E L. Ivchenko, S. N. Danilov, J. Eroms, W. Wegscheider, D. Weiss, W. Prettl, Physical Review Letters 86 (2001) 4358-4361.
  • [31] D. A. E. Vares, M. A. Persinger, Global Journal of Human-Social Science 15 (2015) version 1.
  • [32] N. V. Klochek, L. E. Palamarchuk, M. V. Nikonova, Biophysics 40 (1995) 833-891.
  • [33] P. Rowlands, Hadronic Journal 35 (2012) 557-591.
  • [34] B. T. Dotta, M. A. Persinger Journal of Biophysical Chemistry 3 (2012) 72-80.
  • [35] B. T. Dotta, N. J. Murugan, L. M. Karbowski, M. A. Persinger, International Journal of Physical Sciences 8 (2013) 1783-1787.
  • [36] T. E. Decoursey, Physiology Reviews 83 (2003) 475-579.
  • [37] M. A. Persinger, Journal of Advances in Physics 10 (2015) 2811-2814.
  • [38] M. A. Persinger, S. A. Koren, The Open Astronomy Journal 6 (2013) 10-13.
  • [39] L. Wallace, P. Bernath, W. Livingston, K. Hinkle, J. Busler, B. Guo, K. Lang Science 268 (1995) 1155-158.
  • [40] G. Piccardi, The Chemical Bases of Medical Climatology, C. C. Thomas 1962.
  • [41] M. A. Persinger, Perceptual and Motor Skills 88 (1999) 1351-1355.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-eee6525a-f4df-4d8e-bf94-fcf39f938dc2
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.