Preferences help
enabled [disable] Abstract
Number of results
2020 | 148 | 15-26
Article title

Demonstration of Wet Chemical Synthesis of Nanomaterials for High School Students

Title variants
Languages of publication
Nanotechnology is the most emerging branch of science and technology leading to the development of devices starting from electronics to biomedical devices. It is thus desired that the students should have basic idea of this new emerging technology during their school education. Experimental demonstration of simple experiments of synthesizing nanomaterials and demonstration of its properties are very much important in motivating the students to learn this new technology. Wet chemical synthesis method is a simple and cost-effective method that can be adopted in the chemistry laboratory of higher secondary level school education in India. This hands-on experience will encourage the students to enter more into this nanotechnology.
Physical description
  • Department of Physics, Panskura Banamali College (Autonomous), Purba Medinipur - 721152, West Bengal, India
  • Department of Physics, Sahid Matangini Government College for Women, Purba Medinipur, West Bengal, India
  • Department of Physics (PG & UG), Prabhat Kumar College, Contai - 721404, West Bengal, India
  • [1] G. Wisz, I. Virt, P. Sagan, P. Potera, R. Yavorskyi, Structural, Optical and Electrical Properties of Zinc Oxide Layers Produced by Pulsed Laser Deposition Method. Nanoscale Res Lett 12 (2017) 253.
  • [2] P. K. Samanta, Strong and weak quantum confinement and size dependent optoelectronic properties of zinc oxide. Ann Univ Craiova Phys 28 (2018) 17-23
  • [3] F. Zahedi, R. S. Dariani, S. M. Rozati, Structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis: Effect of precursor concentration. Bull Mater Sci 37 (2014) 433-439
  • [4] N. Karak, P. K. Samanta, T. K. Kundu, Structural and Optical Properties of Alumina Templated Undoped and Co-Doped Zinc Oxide Nanoparticles. Journal of Nanoengineering and Nanomanufacturing 3 (2013) 211-216
  • [5] M. A. Garcia, J. M. Merino, E. Fernández Pinel, A. Quesada, J. de la Venta, M. L. Ruíz González, G. R. Castro, P. Crespo, J. Llopis, J. M. González-Calbet, A. Hernando, Magnetic Properties of ZnO Nanoparticles. Nano Lett 7 (2007) 1489-1494
  • [6] Kh. T. Igamberdiev, Sh. U. Yuldashev, S. S. Kurbanov, T. W. Kang, P. K. Khabibullaev, Sh. M. Rakhimova, V. O. Pelenovich, A. G. Shashkov, Thermal properties of semiconductor zinc oxide nanostructures. Journal of Engineering Physics and Thermophysics 83 (2010) 863-868
  • [7] P. K. Samanta, Structural and Optical Properties of Ultra-Long ZnO Nanorods, Advanced Science, Engineering and Medicine 8 (2016) 128-130
  • [8] Y. Xu, M. Goto, R. Kato, Y. Tanaka, Y. Kagawa, Thermal conductivity of ZnO thin film produced by reactive sputtering. Journal of Applied Physics 111 (2012) 084320
  • [9] T. Mocan, C. T. Matea, T. Pop, O. Mosteanu, A. D. Buzoianu, C. Puia, C. Iancu, L. Mocan, Development of nanoparticle-based optical sensors for pathogenic bacterial detection. J Nanobiotechnol 15 (2017) 25
  • [10] D. Yeo, C. Wiraja, Y. J. Chuah, Y. Gao, C. Xu, A Nanoparticle-based Sensor Platform for Cell Tracking and Status/Function Assessment. Sci Rep 5 (2015) 14768
  • [11] S. K. Gupta, A. Joshi, M. Kaur, Development of gas sensors using ZnO nanostructures. J. Chem. Sci. Vol. 122, No. 1, January 2010, pp. 57-62
  • [12] S. Schauermann, N. Nilius, S. Shaikhutdinov, H. -J. Freund, Nanoparticles for Heterogeneous Catalysis: New Mechanistic Insights. Acc Chem Res 46 (2013) 1673-1681
  • [13] C. Klinke, Electrical transport through self-assembled colloidal nanomaterials and their perspectives. EPL 119(3) (2017) 36002
  • [14] H. Dai, E. S. Wong, C. M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science 272 (1996) 523-526
  • [15] H. Miyata, Toshishige Yamada, D. K. Ferry, Electron transport properties of a strained Si layer on a relaxed Si1−xGex substrate by Monte Carlo simulation. Appl Phys Lett 62 (1993) 2661
  • [16] R. Müller, F. Huber, O. Gelme, M. Madel, J. -P. Scholz, A. Minkow, U. Herr, K. Thonke, Chemical Vapor Deposition Growth of Zinc Oxide on Sapphire with Methane: Initial Crystal Formation Process. Cryst Growth Des 19 (2019) 4964-4969
  • [17] L. R. Damiani, R. D. Mansano, Zinc oxide thin films deposited by magnetron sputtering with various oxygen/argon concentrations. J Phys Conf Ser 370 (2012) 012019
  • [18] P. K. Samanta, A. K. Bandyopadhyay, Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl Nanosci 2(2012) 111-117
  • [19] P. K. Samanta, S. K. Patra, A. Ghosh, P. R. Chaudhuri, Visible emission from ZnO nanorods synthesized by a simple wet chemical method. Int J Nanosci Nanotechnol 1 (2009) 81-90
  • [20] A. S. Ismail, M. H. Mamat, M. F. Malek, M. A. R. Abdullah, M. D. Sin, M. Rusop, A study on different morphological structures of zinc oxide nanostructures for humidity sensing application. AIP Conference Proceedings 1733 (2016) 020010
  • [21] S. Tiwari, M. Vinchurkar, V. Rao, G. Garnier, Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Sci Rep 7 (2017) 43905.
  • [22] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10 (2009) 013001
  • [23] X. -L. Hu, Y. -J. Zhu, S. -W. Wang, Sonochemical and microwave-assisted synthesis of linked single-crystalline ZnO rods. Materials Chemistry and Physics 88 (2004) 421-426
  • [24] R. Singh, S. Dutta, The role of pH and nitrate concentration in the wet chemical growth of nano-rods shaped ZnO photocatalyst. Nano-Structures & Nano-Objects 18 (2019) 100250
  • [25] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, M. Willander, Influence of pH, Precursor Concentration, Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method. Journal of Nanomaterials 2011 (2011) 269692
  • [26] L. Spanhel, Colloidal ZnO nanostructures and functional coatings: A survey. J Sol–Gel Sci Technol 39 (2006) 7-24
  • [27] X. Ma, H. Zhang, Y. Ji, J. Xu, D. Yang, Sequential occurrence of ZnO nanopaticles, nanorods, and nanotips during hydrothermal process in a dilute aqueous solution. Mater Lett 59 (2005) 3393
  • [28] M. Kohls, M. Bonnani, L. Spanhel, Green ErIII luminescence in fractal ZnO nanolattices. Appl Phys Lett 81 (2002) 3858
  • [29] P. K. Samanta, A. K. Bandyopadhyay, S. Basak, P. R. Chaudhuri, Characteristics of electrochemically grown dendritic metallic zinc. Optik 122 (2011) 1520-1522
  • [30] P. K. Samanta, Weak quantum confinement in ZnO Nanorods: a one-dimensional potential well approach. Optics and Photonics Letters 4 (2011) 35-45
  • [31] P. Bindu, S. Thomas, Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8 (2014) 123-134
  • [32] P. K. Samanta, S. Basak, P. R. Chaudhuri, Synthesis and characterization of chemically grown ultralong hexagonal ZnO nanotubes. International Journal of Nanoscience 10 (2011) 69-73
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.