Preferences help
enabled [disable] Abstract
Number of results
2017 | 14 | 11-35
Article title

Packed-Bed Column Adsorption of Metanil Yellow (MY) from Simulated Wastewater using Granular NaOH-Activated Carbon from Cassava (Manihot esculenta) Peels

Title variants
Languages of publication
The ability of NaOH-activated carbon derived from cassava peels waste to remove MY from aqueous solution was carried out in a fixed-bed column adsorber. The parameters studied included initial solution concentration, Co, carbon bed height and volume flow rate. The temperature of operation and initial solution pH were 29 °C and 5.32 respectively. The optimum adsorption capacity, qe 4.12 mg/g was obtained at Co 10mg/L, bed height 10cm and flow rate, 13.3ml/min. Experimental data were analyzed with Langmuir, Freundlich and Temkin isotherm, as well as the Thomas, Yoon-Nelson and Clark kinetic models. All the models were good fits for experimental data based on correlation coefficient, R2 values. The ΔGads and Freundlich n (1.587) show that the biosorption was spontaneous, good and physical. Results show that NaOH-activated carbon from cassava peels has low capacity in the removing MY from aqueous solution.
Physical description
  • [1] Nwabanne, J. I. & Igbokwe, P. K. (2012). Adsorption performance of packed-bed column for the removal of lead(II) using oil palm fibre, Inter. J. Appl. Technol. 2(5), 106-115
  • [2] Ong, S., Seng, C. & Lim, P. (2007). Kinetics of adsorption of Cu(II) and Cd(II) from aqueous solution on husk and modified rice husk, EJEFChe. 6(2), 1764-1774
  • [3] Ahmad, A. A. & Hameed, B. H. (2010). Fixed-bed adsorption of reactive azo dye onto granular activated carbon prepared from waste, J. Hazard. Mater. 17, 298-303
  • [4] Osma, J. F., Saravia, V., Toca-Herrera, J. I., Couto, S. R. (2007) .Sunflower seed shells: a novel and effective low-cost adsorbent for the removal of the diazo dye Reactive Black 5 from aqueous solutions, J. Hazard. Mater. 147, 900-905
  • [5] Soares, G. M. B., Amorim, M. T. P., Hrdina, R. & Costa-Ferreira, M. (2002). Studies on the biotransformation of novel diazo dyes by laccas, Process Biochem. 37, 582-587
  • [6] Mittal, A., Gupta, V. K., Malviya, A & Mittal, J. (2008.) Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (metanil yellow) by adsorption over waste materials (bottom ash and de-oiled soya), J. Hazard. Mater. 151, 821-832
  • [7] Zimmerman, E. W. (1933). Coloured water - proof drawing inks, Ind. Eng. Chem. 25, 1033
  • [8] Sachdeva, S. M., Mani, K. V. Adval, S. K., Jalpota, V. P., Rasela, K. C. & Chadha, D. S. (1992). Acquired toxic methaemoglobinaemia, J. Assoc. Physicians Ind. 40, 239-240
  • [9] Chandro, S. S. & Nagaraja, T. (1987). A food-poisoning out-break with chemical dye: an investigation report, Med. J. Armed Forces Ind. 43, 291-300
  • [10] Hausen, B. M. (1994). A case of allergic contact dermatitis due to metanil yellow, Contact Dermatitis 31, 117-118
  • [11] Ramchandani, S. M., Das, M., Joshi, A. & Khanna, S. K. (1997). Effect of oral and parental administration of metanil yellow on some hepatic and intestinal biochemical parameters, J. Appl. Toxicol. 17, 85-91
  • [12] Das, M., Ramchandani, S., Upreti, R. K. & Khanna, S. K. (1997). Metanil yellow: a bifunctional inducer of hepatic phase I and phase II xenoblastic-metabolizing enzymes, Food Chem. Toxicol. 35, 835-838
  • [13] Gupta, S., Sundarrajan, M. & Rao, K. V. K. (2003). Tumor promotion by metanil yellow and malachite green during rat hepatocarcingenesis associated with dysregulated expression of cell cycle regulatory proteins, Tertogen. Carcin. Mut. (Suppl. I), 301-312
  • [14] Fan, L., Zou, Y., Yang, W., Chern, G. & Yan, F. (2006). Electro-chemical degradation of amaranth aqueous solution on ACF, J. Hazard. Mater. 137, 1182-1188
  • [15] Daneshvar, N., Oladegaragoze, A. & Djafarzadeh, N. (2006). Decolourization of basic dye solutions by electro-coagulation: an investigation of the effect of operational parameters, J. Hazard. Mater. 129, 116-122
  • [16] Rajkumar, D. & Kim, J. G. (2006). Oxidation of various reactive dyes with in-situ electro-generated active chlorine for textile dyeing: Industrial wastewater treatment, J. Hazard. Mater. 13, 203-212
  • [17] Gupta, V. K., Mittal, A., Jain, R., Mathur, M. & Sikarwar, S. (2007). Photochemical degradation of hazardous dye-safranine –T using TiO2 catalyst, J. Colloid Interf. Sci. 309, 464-469
  • [18] Zhu, H., Yang, X., Mao, Y., Cheng, Y., Long, X. & Yuan, W. (2011). Adsorption of EDTA on activated carbon from aqueous solutions, J. Hazard. Mater. 185, 195-957
  • [19] Salman, J. M., Njoku, V. O. & Hameed, B. H. (2011). Batch and fixed-bed adsorption of 2,4-dichlorophenoxyacetic acid onto oil palm frond activated carbon, Chem. Eng. J. 174, 33-40
  • [20] Ren, L., Zhang, J., Li, Y. & Zhang, C. (2011). Preparation and evaluation of cattail fibre-based activated carbon for 2,4-dichlorophenol and 2,4,6-trichlorophenol removal, Chem. Eng. J., 168, 553-561
  • [21] Li, W., Zhang, J., Wang, Y. & Li, Y. (2010). Adsorptive removal of Cr(VI) by Fe-modified activated carbon prepared from Trapa natans husk, Chem. Eng. J. 162, 677-684
  • [22] Petrov, B., Budinova, T., Tsyntsarski, B., Kachkodan, V., Shkavro, Z. & Petrov, N. (2010). Removal of aromatic hydrocarbons from water by activated carbon from apricot stones, Chem. Eng. J. 165, 258-264
  • [23] Sun, Y. & Webley, P. A. (2010). Preparation of activated carbon from corn cob with large specific surface area by a variety of chemical activators and their application in gas storage, Chem. Eng. J. 162, 883-892
  • [24] Dolas, H., Sahin, O., Saka, C. & Demir, H. (2011). A new method in producing high surface area activated carbon: the effect of salt on the surface area and the pore size distribution of activated carbon prepared from pistachio shell, Chem. Eng. J. 166, 191-197
  • [25] Baccar, R., Blanquez, P., Bouzid, J., Feki, M. and Sarra, M. (2010). Equilibrium, thermodynamic and kinetic studies on adsorption of commercial dye by activated carbon derived from olive-waste cakes, Chem. Eng. J. 165, 457-464
  • [26] Banat, F., Al-Sheh, S., Al-Ahmad, R. & Bni-Khalid, F. (2007). Bench-scale and packed-bed sorption of methylene blue using treated olive pomace and charcoal, Bioresour. Technol. 98(16), 3017-3025
  • [27] Pokordi, K. & Vasanth Kumar, K. (2007). Equilibrium, Kinetics and Mechanism modelling and simulation of basic and acid dyes sorption onto jute fibre carbon: Eosin yellow, malachite green and crystal violet single component systems, J. Hazard. Mater. 143(1-2), 311-327. doi:10.1016/j.jhazmat.2006.09.029
  • [28] Ekpete, O. A. (2012). Adsorption and kinetic studies of phenol and 2-chlorophenol onto fluted pumpkin (Telfairia occidentalis, Hook) stem waste activated carbon PhD Dissertation, University of PortHarcourt, PortHarcourt, Nigeria
  • [29] Mohammed, A., Aboje, A. A., Auta, M. & Jibril, M. (2012). A comparative analysis and characterization of animal bones as adsorbent, Adv. Appl. Sci. Res. 3(5), 3089-3096
  • [30] Cerator, A. B. & Luteneger, A. J. (2002). Determination of surface area of fine grained soils by the ethylene glycol monoethly ether (EGME) method, J. Geotech. Testing 25(3), 1-7
  • [31] Gimba, C. & Musa, I. (2005). Adsorption of phenols and some toxic metals from textile effluents, In Proceedings of the 28th Annual International Conference of Chemical Society of Nigeria, 32, 167-170
  • [32] American Standard Test Method for Testing and Materials, (1996). Annual Book of ASTM Standard, Vol. 15.01 Refractories, Carbon and Graphic Products; Activated Carbon, ASTM, Philadelphia PA
  • [33] Rengaraj, S., Seung-Hyeon, M. & Sivabam, S. (2002). Agricultural solid waste for the removal of organics: Adsorption of phenol from water and waste water by palm seed coat activated carbon, Waste Manage. 22, 543-548
  • [34] Association of Official Analytical Chemists (AOAC) (1990). Official Methods of Analysis 15th Ed. Arlington, VA
  • [35] Isiuku, B. O. (2015). Adsorption of metanil yellow and methyl red from aqueous solutions using cassava peels activated carbon in a fixed-bed column, PhD Dissertation, University of Port Harcourt, Port Harcourt, Nigeria
  • [36] Isiuku, B. O., M. Horsfall Jnr., M. & A.I. Spiff, A. I. (2014). Colour removal from a simulated methyl red wastewater by adsorption on carbon in a fixed bed, Res. J. Appl. Sci. 9(4), 201-207
  • [37] Aksu, Z. & Gӧnen, F. (2004). Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem. 39, 599-613
  • [38] Taty-Custodes, V. C., Fauduet, H., Porte, C. & Ho, Y. S. (2005). Removal of lead (II) ions from synthetic and real effluents using immobilized Pinus sylvetris sawdust: Adsorption on a fixed-bed column, J. Hazard. Mater. B123, 135-144
  • [39] O. S. Bello, O. S., O. M. Adelaide, O. M. M. A. Hameed, M. A. & O. A. M. Popoola, O. A. M. (2010). Macedonian J. Chem. Chem. Eng. 29 (1), 77
  • [40] P. V. Nidheesh, P. V., R. Gandhimathi, R., S. T. Ramesh, S. T. & T. S. A. Singh, T. S. A., J. Urban Environ. Eng. 6 (1), 18 (2012)
  • [41] O. S. Bello, T. A. Fatona, F. S. Falaye, O. M. Osuolale and V. O. Njoku, Environ. Eng. Sci. 29 (3), 186 (2012)
  • [42] M. Dutta, J. K. Basu, M. H. Faraz, N. Gautam, and A. Kumar, Arch. Appl. Sci. Res. 4 (2), 882 (2012)
  • [43] H. Patel and R.T. Vashi, (2012). Fixed-bed column adsorption of Acid Yellow 17 dye onto tamarind seed powder, Canad. J. Chem. Eng. 90, 180-185
  • [44] B.O. Isiuku, M. Horsfall Jnr and A.I. Spiff, (2013). Adsorption of metanil yellow on chemically-activated carbon in a packed-bed column: Effect of activation reagent, J. Eng. Appl. Sci. 8(9-12): 282-289
  • [45] P.Sivakumar and P.N. Palanisamy, (2009b). Adsorptive removal of reactive and direct dyes using non-conventional adsorbent – column studies, Indian J. Chem. Technol. 68: 894-899
  • [46] Y.S. Al-Degs, M.A.M. Kraisheh, J.S. Allen and M.N. Ahmad, (2009). Adsorption characteristics of reactive dyes in columns of activated carbon, J. Hazard. Mater. 165: 944-949
  • [47] R. Han, Y. Wang, W. Yu, W. Zou, J. Shi and H. Liu, (2007). Biosorption of methylene blue from aqueous solution by rice husk in a fixed-bed column, J. Hazard. Mater. 141, 713-718
  • [48] A.B. Engin, (2009). Feasibility analysis of colour removal from textile dyeing wastewater in a fixed-bed column system by surfactant-modified zeolite (SMZ), J. Hazard. Mater. 166: 180-185
  • [49] A. H. Al-Fatlawi, and M. M. Neamah, Int. J. Adv. Res. Sci. Eng. Technol. 2 (3), 557 (2015)
  • [50] K. Baek, S. Song, S. Kang, Y. Rhee, C. Lee, B. Lee, S. Hudson and T. Hwang, (2007). Adsorption kinetics of boron by anion exchange resin in packed column bed. J. Ind. Eng. Chem. 13 (3), 452
  • [51] Depci, T., Kul A. L., Onal, Y., Disli, E., Alkan, S. & Turkmenoglu, Z. F. (2012). Physicochem. Probl. Miner. Process. 48 (1), 253
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.