PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 9 | 126-144
Article title

Średni ciężar atomowy chondrytu Vicência (LL3.2)

Authors
Selected contents from this journal
Title variants
EN
Mean atomic weight of Vicência LL3.2 chondrite
Languages of publication
PL
Abstracts
EN
Mean atomic weight Amean of Vicência (LL3.2 S1W0, fall 2013) ordinary chondrite has been calculated using literature data (Keil et al. 2015) on chemical composition of the meteorite and using relationships: between mean atomic weight and Fe/Si atomic ratio, between Amean and grain density, and between Amean and magnetic susceptibility. It was shown that Vicência’s Amean = 22.91 for composition without water. This value is close to the mean atomic weight of LL chondrite falls, is close to Amean value of LL3 chondrite falls, and is close to Amean value of Semarkona LL3.0 chondrite. Vicência’s Fe/Si atomic ratio (0.492±0.050) leads to Amean = 23.06–23.26, which is close to the value determined by bulk composition. Vicência’s Fe/Si atomic ratio is close to the value for Semarkona’s (Fe/Si = 0.511), and is close to LL’s mean Fe/Si ratio (0.520). This confirms that Vicência belongs to LL chondrites, as previously classified. Using dependence between mean atomic weight and grain density leads to Amean = 21.89±0.54 (dgr = 3.28 g/cm3, Keil et al. 2015), and using dependence between Amean and magnetic susceptibility gives Amean = 23.01±0.24 (logc = 4.30, Keil et al. 2015). Arithmetic mean of Amean (dgr), Amean (logc), and Amean(Fe/Si), gives 22.72±0.73, the value close to Amean(bulk composition) determined using compositional data. Mean atomic number Zmean, and Amean/Zmean ratio of the meteorite have been also calculated. Vicência’s Zmean = 11.37, and Amean/Zmean ratio is: 2.015 for composition without water. Vicência’s silicates shown the values: Amean = 21,67, Zmean = 10.76, Amean/Z mean = 2.014, Fe/Si = 0.318, Amean(Fe/Si) = 22.07–22.18, and Fe, Ni metal values: Amean = 56.63, Zmean = 26.53, and Amean/Z mean = 2.135. Two dependences: i) grain density dgr on Amean, and ii) grain density dgr on Fe/Si atomic ratio, were used to determine/verify grain density of Vicência chondrite. It was established that dgr(Amean) leads to the values: 3,42 g/cm3 for Vicência chondrite, 3,25 g/cm3 for silicates, and 7,90 g/cm3 for Fe, Ni metal of Vicência meteorite. Dependence dgr(Fe/Si) predicts density for Vicência chondrite: 3,47–3,49 g/cm3, and for silicates: 3,32–3,35 g/cm3.
Discipline
Publisher

Year
Volume
9
Pages
126-144
Physical description
Contributors
References
  • Anderson D.L., 1989, Theory of the Earth, Blackwell, London.
  • Anderson D.L., Kovach R. L., 1967, The composition of the terrestrial planets, Earth Planet. Sci. Lett., 3, s. 19–24.
  • Anderson D.L., Jordan T., 1970, The composition of lower mantle, Phys. Earth Planet. Interior, 3, s. 23–35.
  • Bartoschewitz R., Appel P., Barrat J.-A., Bischoff A., Caffee M.W., Franchi, I.A. Gabelica Z., Greenwood R.C., Harir M., Harries D., Hochleitner R., Hopp J., Laubenstein M., Mader B., Marques R., Morlok A., Nolze G., Prudęncio M.I., Rochette P., Ruf A., Schmitt-Kopplin P., Seemann E., Szurgot M., Tagle R., Wach R.A., Welten K.C., Weyrauch M., Wimmer K. (The Braunschweig Meteorite Consortium), 2017, The Braunschweig meteorite – a recent L6 chondrite fall in Germany, Chemie der Erde/Geochemistry, 77, s. 207–224.
  • Consolmagno G.J., Britt D.T., Macke R.J., 2008, The significance of meteorite density and porosity, Chemie der Erde 68, s. 1–29.
  • Duda P., Rzepecka P., Jakubowska M., Woźniak M., Karwowski Ł., Gałązka-Friedman, 2017, Badania mössbauerowskie siarczków żelaza w chondrytach zwyczajnych typu LL, Acta Societatis Metheoriticae Polonorum, 8, s. 30–39.
  • Gałązka-Friedman J., Woźniak M., Duda P., Rzepecka P., Jakubowska M., Karwowski Ł., 2017, Mössbauer spectroscopy - a useful method for classification of meteorites? Hyperfine Interact., 238, 67, DOI 10.1007/s10751-017-1439-1.
  • Gałązka-Friedman J., Szlachta K., Karwowski Ł., Woźniak M., 2014, Mössbauer studies of Soltmany and Shisr 176 meteorites – comparison with other ordinary chondrites, Hyperfine Interact., 226, s. 593–600.
  • Gomes C.B., Keil K., 1980, Brazillian Stone Meteorites, Albyquerque.
  • Hutchison R., 2004, Meteorites – A petrologic, chemical and isotopic synthesis, Cambridge.
  • Jakubowska M., Rzepecka P., Duda P., Woźniak M., Gałązka-Friedman J., 2017, Badania mössbauerowskie chondrytów zwyczajnych typu H potwierdzają stopień ich zwietrzenia określony za pomocą skali W, Acta Societatis Metheoriticae Polonorum, 8, s. 63–72.
  • Jarosewich E., 1990, Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses, Meteoritics, 35, s. 323–337.
  • Keil K., Zucolotto M.E., Krot A.N., Doyle P.M., Telus M., Krot T.V., Greenwood R.C., Franchi I.A., Wasson J.T., Welten K.C., Caffe M.W., Sears D.W.G., Riebe M., Wieler R., dos Santos E., Scorzelli R.B., Gattacceca J., Lagroix F., Laubenstein M., Mendes J.C., Schmitt-Kopplin P., Harir M., Moutinho A.L.R., The Vicęncia meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite, Meteoritics & Planetary Science, 50, s. 1089–1111.
  • Łuszczek K., Wach R.A., 2014, NWA 6255 meteorite - thermophysical properties of interior and the crust, Meteorites, 3, s. 33–44.
  • Macke R. J., 2010, Survey of meteorite physical properties: density, porosity and magnetic susceptibility, Ph.D. Thesis, University of Central Florida, Orlando.
  • Maj S., 1998, Phonon thermal conductivity of geomaterials: Relationship to the density and mean atomic weight, Acta Geophys. Pol., 46, s. 415–425.
  • Menzies O.N., Bland P.A., Berry F.J., Cressey G., 2005, A Mössbauer spectroscopy and X-ray diffraction study of ordinary chondrites: Quantification of modal mineralogy and implications for redox conditions during metamorphism, Meteoritics & Planetary Science, 40(7), s. 1023–1042.
  • Meteoritical Bulletin Database, 2018, https://www.lpi.usra.edu/meteor/.
  • Przylibski T.A., 2016, Chondryt Sołtmany, Acta Societatis Metheoriticae Polonorum, 7, s. 93–122.
  • Ringwood A.E., 1966, Chemical evolution of the terrestrial planets, Geochim. Cosmochim. Acta, 30, s. 41–104.
  • Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G., Folco L., Gattacceca J., Osete L.M., Pesonen L., 2003, Magnetic classification of stony meteorites: 1. Ordinary chondrites, Meteoritics & Planetary Science, 38, s. 251–268.
  • Rochette P., Gattacceca J., Bonal L., Bourot-Denise M., Chevrier V., Clerc J.P., Consolmagno G., Folco L., Gounnelle M., Kohout T., Lauri Pesonen L., Eric Quirico E., Sagnotti L., Skripnik A., 2008, Magnetic classification of stony meteorites: 2. Non-ordinary chondrites, Meteoritics & Planetary Science, 43, s. 959–980.
  • Rochette P., Gattacceca J., Lewandowski M., 2012, Magnetic classification of meteorites and application to the Sołtmany fall, Meteorites, 2, s. 67–71.
  • Stacey F.D., 2005, High pressure equations of state and planetary interiors, Rep. Prog. Phys., 68, s. 341–383.
  • Szlachta K., Woźniak M., Gałązka-Friedman J., 2014, Porównawcze badania mössbauerowskie meteorytów: Sołtmany (L6), Chelyabinsk (LL5) i Grzempy (H5), Acta Societatis Metheoriticae Polonorum, 5, s. 115–120.
  • Szurgot M., 2015a, Mean atomic weight of Earth, Moon, Venus, Mercury and Mars. Effect of mass of cores and density of planets, 46th Lunar Planet. Sci. Conf., #1536.pdf
  • Szurgot M., 2015b, Core mass fraction and mean atomic weight of terrestrial planets, moon, and protoplanet Vesta, Comparative Tectonics and Geodynamics of Venus, Earth, and Rocky Exoplanets Workshop, #5001.pdf.
  • Szurgot M., 2015c, Średni ciężar atomowy chondrytu Sołtmany, chondrytów L6 i minerałów pozaziemskich, Acta Societatis Metheoriticae Polonorum, 6, s. 107–128.
  • Szurgot M., 2015d, Mean atomic weight of Chelyabinsk and Olivenza LL5 chondrites, Meteoritics & Planetary Science, 50(S1), #5008.pdf.
  • Szurgot M., 2015e, Mean atomic weight of Pułtusk meteorite and H chondrites, Meteoritics & Planetary Science, 50(S1), #5013.pdf.
  • Szurgot M., 2016a. Mean atomic weight of L/LL and H/L intermediate ordinary chondrites, 47th Lunar Planet. Sci. Conf., Abstract #2180.
  • Szurgot M., 2016b, Mean atomic weight of ordinary chondrites. Effect of petrologic type, Meteoritics & Planetary Science, 51(S1), #6021.pdf.
  • Szurgot M., 2016c, Mean atomic weight of Białystok eucrite, Łowicz mesosiderite, and Baszkówka chondrite, Meteoritics & Planetary Science, 51(S1), #6005.pdf.
  • Szurgot M., 2016d, Średni ciężar atomowy chondrytów LL5: Siena, Hautes Fagnes i NWA 7915, Acta Societatis Metheoriticae Polonorum, 7, s. 133–143.
  • Szurgot M., 2017a. Mean atomic weight of Earth and enstatite chondrites, 48th Lunar Planet. Sci. Conf., Abstract #1130.
  • Szurgot M., 2017b. Mean atomic weight of chondrules and matrices in Semarkona, Allende and Sharps meteorites, LPI Contrib. No. 1963, Workshop on Chondrules and Protoplanetary Disk, Abstract #2002.
  • Szurgot M., 2017c, Średni ciężar atomowy chondrytu Ensisheim (LL6), Acta Societatis Metheoriticae Polonorum, 8, s. 110–122.
  • Szurgot M., 2017d, Mean atomic weight of Stubenberg meteorite, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6005.
  • Szurgot M., 2017e, Uncompressed density of the Moon, lunar mantle and core, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6007.
  • Szurgot M., 2017f, Relationship between density of planetary materials and iron to silicon ratio. Grain density for ordinary chondrites, and uncompressed density for Moon, Earth, Venus, and Mars, Meteoritics & Planetary Science, 52(S1), #6008.pdf.
  • Szurgot M., Wach R.A., Przylibski T.A., 2012, Thermophysical properties of the Sołtmany meteorite, Meteorites, 2, s. 53–65.
  • Szurgot M., Wach R.A., Bartoschewitz R., 2017, Mean atomic weight of Braunschweig meteorite, Meteoritics & Planetary Science, 52(S1), #6002.pdf.
  • Szurgot M., 2018. Mean atomic weight of ordinary chondrites from Spanish falls, LPI Contrib. No. 2083, 49th Lunar Planet. Sci. Conf., Abstract #1039.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ece30180-40a9-4f50-956c-16a26603788f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.