PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 94 | 1 | 1-71
Article title

D = 4, N = 1 supergravity in superspace: general overview and technical analysis

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Considering the supersymmetry, the Einstein theory of general relativity brings to supergravity and the superspace gives a geometrical meaning to the supersymmetry transformations. I consider in this work the technical complete construction of D = 4, N = 1 supergravity in a geometrical way, i.e. using superforms in superspace as extension of spinor-tensor calculus. Starting by the pure D = 4, N = 1 supergravity, the coupling with scalar multiplets (multiplets of Wess-Zumino) and vector multiplets is performed. I use the concepts of supersymmetry, superspace and rheonomic principle. Bianchi identities are analyzed and resolved, ending with the Bianchi identity of gravitino. Supergravity theories are the effective theories of superstring theories.
Discipline
Publisher

Year
Volume
94
Issue
1
Pages
1-71
Physical description
Contributors
author
  • University of Padova, Stradella S. Nicola 3, 36100 Vicenza, Italy
References
  • [1] P. Di Sia, Supergravità nel superspazio: panoramica generale e analisi tecnica, Aracne Editrice, Roma, 2014.
  • [2] Available: https://www.google.it/search?q=Elementary+particles+of+standard+model&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiYzpug4NrYAhWQGuwKHbDPDWQQ_AUICigB&biw=819&bih=395
  • [3] P. Fayet, Supersymmetry and weak, electromagnetic and strong interactions, Physics Letters B 64(2) (1976) 159-162.
  • [4] P. Fayet, Spontaneously broken supersymmetric theories of weak, electromagnetic and strong interactions, Physics Letters B 69(4) (1977) 489-494.
  • [5] Available: https://www.google.it/search?q=Scheme+of+interactions+among+particles+described+by+the+standard+model&source=lnms&tbm=isch&sa=X&ved=0ahUKEwjnttnj4NrYAhXODewKHeZyCvYQ_AUICigB&biw=819&bih=395
  • [6] G. Giachetta, L. Mangiarotti, G. Sardanashvily, Advanced Classical Field Theory, World Scientific Publishing Company, Singapore, 2009.
  • [7] M. Drees, An Introduction to Supersymmetry, available: arXiv:hep-ph/9611409v1 (1996).
  • [8] A. Bilal, Introduction to Supersymmetry, available: arXiv:hep-th/0101055v1 (2001).
  • [9] H. P. Nilles, Supersymmetry, supergravity and particle physics, Physics Reports 110(1-2) (1984) 1-162.
  • [10] F. Brandt, Lectures on supergravity, available: arXiv:hep-th/0204035v4 (2002).
  • [11] M. B. Green, J. H. Schwarz, E. Witten, Superstring Theory: 25th Anniversary Edition, Cambridge Monographs on Mathematical Physics, Vol. 1, Cambridge University Press, Cambridge, 2012.
  • [12] H. Nastase, Introduction to supergravity, available: arXiv:1112.3502v3 (2012).
  • [13] P. Di Sia, About the peculiar Aspects of Relativity and beyond: a pedagogical Perspective, American Journal of Educational Research 2(6) (2014) 357-360.
  • [14] D. Z. Freedman, A. Van Proeyen, Supergravity, Cambridge University Press, Cambridge, 2012.
  • [15] P. Di Sia, Approaching youngs to unified theories: the charm of string theories, Procedia - Social and Behavioral Sciences Journal 174C (2015) 10-16.
  • [16] P. Di Sia, Exciting Peculiarities of the Extreme Physics, Journal of Physics: Conference Series 442(1) (2013) 012068.
  • [17] P. Di Sia, Extreme Physics and Informational/Computational Limits, Journal of Physics: Conference Series 306 (2011) 012067.
  • [18] P. Di Sia, Geometric construction of D = 4, N = 1 pure supergravity, International Research Journal of Engineering and Technology (IRJET) 2(4) (2015) 16-20.
  • [19] P. Di Sia, About the importance of supersymmetry and superspace for supergravity, International Journal of Innovative Science, Engineering and Technology 2(4) (2015) 495-500.
  • [20] P. Di Sia, Relevant tools in building supergravity theories, Integrated Journal of British 2(3) (2015) 1-5.
  • [21] P. Di Sia, Rheonomic principle, Bianchi identities and supergravity, International Journal of Innovative Science, Engineering and Technology 2(5) (2015) 615-619.
  • [22] S. Ferrara, S. Sabharwal, Structure of new minimal supergravity, Annals of Physics 189(2) (1989) 318-351.
  • [23] P. van Nieuwenhuizen, Supersymmetry, supergravity, superspace and BRST symmetry in a simple model, available: arXiv:hep-th/0408179v1 (2004).
  • [24] W. D. Linch III, Markus A. Luty, J. Phillips, Five dimensional supergravity in N = 1 superspace, Physical Review D 68 (2003) 025008.
  • [25] Available: https://ncatlab.org/nlab/show/D%27Auria-Fre+formulation+of+supergravity
  • [26] P. Di Sia, Kähler manifolds as target space of supergravity theories: characteristics for D = 4, N = 1 theory, International Journal of Current Research 7(1) (2015) 11971-11980.
  • [27] V. Singh, S. P. Mishra, R. Prasad, Complex Manifolds and its Submanifolds, LAP Lambert Academic Publishing, Saarbrücken, 2013.
  • [28] W. Ballmann, Lectures on Kähler Manifolds, American Mathematical Society, Rhode Island, 2006.
  • [29] B. Zumino, Supersymmetry and Kähler Manifolds, Physics Letters B 87 (1979) 203-212.
  • [30] P. Di Sia, Geometric coupling of scalar multiplets to D = 4, N = 1 pure supergravity, International Research Journal of Engineering and Technology 2(9) (2015) 78-84.
  • [31] P. Di Sia, Geometric construction of action for pure supergravity coupled to Wess-Zumino multiplets, International Research Journal of Engineering and Technology 3(2) (2016) 10-14.
  • [32] J. Wess, B. Zumino, Supergauge transformations in four dimensions, Nuclear Physics B 70(1) (1974) 39-50.
  • [33] S. Ferrara, B. Zumino, J. Wess, Supergauge multiplets and superfields, Physics Letters B 51(3) (1974) 239-241.
  • [34] T. Buscher, U. Lindström, M. Roček, New supersymmetric σ-models with Wess-Zumino terms, Physics Letters B 202(1) (1988) 94-98.
  • [35] P. Di Sia, Geometric coupling of vector multiplets with D = 4, N = 1 supergravity, International Journal of Innovative Science, Engineering and Technology 3(8) (2016) 61-66.
  • [36] V. Cortés, C. Mayer, T. Mohaupt and F. Saueressig, Special geometry of euclidean supersymmetry 1. Vector multiplets, Journal of High Energy Physics 03 (2004) 028.
  • [37] C. Römelsberger, Counting chiral primaries in N = 1, D = 4 superconformal field theories, Nuclear Physics B 747(3) (2006) 329-353.
  • [38] M. Chiodaroli, M. Günaydin, H. Johansson, R. Roiban, Spontaneously broken Yang-Mills-Einstein supergravities as double copies, Journal of High Energy Physics (2017) 64.
  • [39] K. Becker, M. Becker, J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press, Cambridge, 2007.
  • [40] Clifford V. Johnson, Superstrings from supergravity, Nuclear Physics B 537(1-3) (1999) 109-128.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ebe54526-7668-4eec-a3c0-572b91ce42a4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.