PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 14 | 1 | 10-19
Article title

Wpływ kwercetyny na peroksydację lipidów indukowaną przez zyprazydon w ludzkim osoczu – badania in vitro

Content
Title variants
EN
The effect of quercetine on lipid peroxidation induced by ziprasidone in human plasma – in vitro studies
Languages of publication
EN PL
Abstracts
EN
Some antipsychotics, including ziprasidone (ZIP), contribute to pro- and antioxidative imbalance in schizophrenic patients. Therefore, searching for effective antioxidative supplementation decreasing antipsychotics prooxidative effects has a high clinical importance. The aim of the study was to establish the effect of ZIP on human plasma – by determining the levels of thiobarbituric acid reactive substances (TBARS), in in vitro model. Material and methods: Blood samples were obtained from healthy male volunteers and placed in the ACD solution. The active substance, i.e. ZIP, was dissolved in 0.01% solution of dimethylsulfoxide to reach the final concentrations (40 ng/ml, 139 ng/ml) and incubated with plasma (for 1 and 24 hours at 37°C). Plasma was also incubated with quercetine (7.5 μg/ml, 15 μg/ml) and with quercetine and ZIP, in different combinations of tested concentrations. Control samples (without the drug) were performed for each experiment. TBARS concentrations were determined using Rice-Evans spectrophotometric method (modified by Wachowicz and Kustroń). Results: ZIP at the concentrations of 40 ng/ml and 139 ng/ml after 24 hours of incubation with plasma causes an increase in TBARS (p respectively <0.01 and <0.002). Quercetine (7.5 μg/ml, 15 μg/ml) incubated for 24 hours in plasma with ZIP decreases lipid peroxidation on average by 38% (for ZIP 40 ng/ml p respectively <0.0003 and <0.0001, for ZIP 139 ng/ml p respectively <0.002 and <0.004). Conclusions: Quercetine significantly decreases lipid peroxidation induced by ziprasidone.
PL
Niektóre leki przeciwpsychotyczne, w tym zyprazydon (ZYP), przyczyniają się do zaburzeń równowagi proi antyoksydacyjnej u chorych na schizofrenię. Poszukiwanie skutecznej antyoksydacyjnej suplementacji zmniejszającej działanie prooksydacyjne leków przeciwpsychotycznych ma zatem duże znaczenie kliniczne. Celem badania było ustalenie wpływu ZYP na peroksydację lipidów ludzkiego osocza – przez oznaczenie stężenia związków reagujących z kwasem tiobarbiturowym (TBARS), w modelu in vitro. Materiał i metody: Krew do badań pobrano od zdrowych ochotników płci męskiej – na roztwór ACD. Substancję aktywną, czyli ZYP, rozpuszczono w 0,01% dimetylosulfotlenku do stężeń końcowych (40 ng/ml, 139 ng/ml) i inkubowano z osoczem (1 i 24 godziny, 37°C). Osocze inkubowano również z kwercetyną (7,5 μg/ml, 15 μg/ml) oraz z kwercetyną i ZYP, w różnych kombinacjach badanych stężeń. Do każdego doświadczenia wykonano próby kontrolne (bez leku). Oznaczenia stężenia TBARS przeprowadzono metodą spektrofotometryczną Rice’a-Evansa (modyfikacja: Wachowicz i Kustroń). Wyniki: ZYP w stężeniach 40 ng/ml i 139 ng/ml po 24 godzinach inkubacji z osoczem powoduje wzrost stężenia TBARS (p odpowiednio <0,01 i <0,002). Kwercetyna (7,5 μg/ml, 15 μg/ml) inkubowana 24 godziny w osoczu wraz z ZYP zmniejsza peroksydację lipidów średnio o 38% (dla ZYP 40 ng/ml p odpowiednio <0,0003 i <0,0001, dla ZYP 139 ng/ml p odpowiednio <0,002 i <0,004). Wniosek: Kwercetyna istotnie obniża peroksydację lipidów wywoływaną przez zyprazydon.
Discipline
Year
Volume
14
Issue
1
Pages
10-19
Physical description
Contributors
author
  • Zakład Psychiatrii Biologicznej Międzywydziałowej, Katedra Fizjologii Doświadczalnej i Klinicznej, Uniwersytet Medyczny w Łodzi. The project has been financed by the means of the University of Łódź, research No 502-03/1-155-02/502-14-106
  • Dr hab. n. med. Anna Dietrich-Muszalska – kierownik Zakładu Psychiatrii Biologicznej Międzywydziałowej Katedry Fizjologii Doświadczalnej i Klinicznej Uniwersytetu Medycznego w Łodzi, ul. Mazowiecka 6/8, 92-215 Łódź, tel.: 42 272 56 59, faks: 42 272 56 52. Praca finansowana przez Uniwersytet Medyczny w Łodzi, numer badań: 502-03/1-155-02/502-14-106
References
  • 1. Andreassen O.A., Jorgensen H.A.: Neurotoxicity associated with neuroleptic induced oral dyskinesias in rats. Implications for tardive dyskinesia? Prog. Neurobiol. 2000; 61: 525-541.
  • 2. Cadet J.L., Lohr J.B., Jeste D.V: Free radicals and tardive dyskinesia. Trends Neurosci. 1986; 9: 107-108.
  • 3. Coyle J.T., Puttfarcken P.: Oxidative stress glutamate and neu-rodegenerative disorders. Science 1993; 262: 689-695.
  • 4. Dietrich-Muszalska A., Kontek B., Rabe-Jablońska J.: Que-tiapine, olanzapine and haloperidol affect human plasma lipid peroxidation in vitro. Neuropsychobiology 2011; 63: 197-201.
  • 5. Parikh V, Khan M.M., Mahadik S.P.: Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 2003; 37: 43-51.
  • 6. Pillai A., Parikh V, Terry A.V Jr, Mahadik S.P.: Long-term antipsychotic treatments and crossover studies in rats: differential effects of typical and atypical agents on the expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J. Psychiatr. Res. 2007; 41: 372-386.
  • 7. Reinke A., Martins M.R., Lima M.S. i wsp.: Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci. Lett. 2004; 372: 157-160.
  • 8. Miceli J.J., Wilner K.D., Hansen R.A. i wsp.: Single- and mul-tiple-dose pharmacokinetics of ziprasidone under non-fasting conditions in healthy male volunteers. Br. J. Clin. Pharmacol. 2000; 49 supl. 1: 5S-13S.
  • 9. Prakash C., Kamel A., Gummerus J., Wilner K.: Metabolism and excretion of a new antipsychotic drug, ziprasidone in humans. Drug Metab. Dispos. 1997; 25: 863-872.
  • 10. Schatzberg A.F., Nemeroff C.B. (red.): The American Psychiatric Publishing Textbook of Psychopharmacology. American Psychiatric Publishing, Arlington 2004.
  • 11. Stip E., Zhornitsky S., Moteshafi H. i wsp.: Ziprasidone for psychotic disorders: a meta-analysis and systematic review of the relationship between pharmacokinetics, pharmacodynamics, and clinical profile. Clin. Ther. 2011; 33: 1853-1867.
  • 12. Lee H.B., Yoon B.H., Kwon Y.J. i wsp.: The efficacy and safety of switching to ziprasidone from olanzapine in patients with bipolar I disorder: an 8-week, multicenter, open-label study. Clin. Drug Investig. 2013; 33: 743-753.
  • 13. Weiden P.J., Daniel D.G., Simpson G., Romano S.J.: Improvement in indices of health status in outpatients with schizophrenia switched to ziprasidone. J. Clin. Psychopharmacol. 2003; 23: 595-600.
  • 14. Nijveldt R., van Nood E., van Hoorn D.E.C. i wsp.: Flavo-noids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 2001; 74: 418-425.
  • 15. Formica J.V, Regelson W.: Review of the biology of quercetin and related bioflavonoids. Food Chem. Toxicol. 1995; 33: 1061-1080.
  • 16. Robaszkiewicz A., Balcerczyk A., Bartosz G.: Antioxidative and prooxidative effects of quercetin on A549 cells. Cell Biol. Int. 2007; 31: 1245-1250.
  • 17. Bors W., Michel C., Saran M.: Flavonoids as antioxidants: rate constants for reaction with oxygen radicals. Methods Enzymol. 1994; 234: 420-429.
  • 18. Afanas’ev I.B., Dorozhko A.I., Brodskii A.V i wsp.: Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol. 1989; 38: 1763-1768.
  • 19. Zielińska M., Kostrzewa A., Ignatowicz E., Budzianowski J.: The flavonoids, quercetin and 3-O-acylglucosides diminish neutrophil oxidative metabolism and lipid peroxidation. Acta Biochim. Pol. 2001; 48: 183-189.
  • 20. da Silva E.L., Piskula M.K., Yamamoto N. i wsp.: Quercetin metabolites inhibit cooper ion-induced lipid peroxidation in rat plasma. FEBS Lett. 1998; 430: 405-408.
  • 21. Fiorani M., De Sanctis R., Menghinello P. i wsp.: Quercetin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells. Free Radic. Res. 2001; 34: 639-648.
  • 22. Robak J., Gryglewski R.J.: Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 1988; 37: 837-841.
  • 23. Robak J., Gryglewski R.J.: Bioactivity of flavonoids. Pol. J. Pharmacol. 1996; 48: 555-564.
  • 24. Nagata H., Takekoshi S., Takagi T. i wsp.: Antioxidative action of flavonoids, quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai J. Exp. Clin. Med. 1999; 24: 1-11.
  • 25. Egert S., Bosy-Westphal A., Seiberl J. i wsp.: Quercetin reduces systolic blood pressure and plasma oxidised low-density lipoprotein concentrations in overweight subjects with a high-cardiovascular disease risk phenotype: a double-blinded, placebo-controlled cross-over study. Br. J. Nutr. 2009; 102: 1065-1074.
  • 26. De Whalley C.V, Rankin S.M., Hoult J.R.: Flavonoids inhibit the oxidative modifications of low density lipoproteins. Bio-chem. Pharmacol. 1990; 39: 1743-1749.
  • 27. Edwards R.L., Lyon T., Litwin S.E. i wsp.: Quercetin reduces blood pressure in hypertensive subjects. J. Nutr. 2007; 137: 2405-2411.
  • 28. Loke W.M., Proudfoot J.M., Hodgson J.M. i wsp.: Specific dietary polyphenols attenuate atherosclerosis in apolipopro-tein E-knockout mice by alleviating inflammation and endothelial dysfunction. Arterioscler. Thromb. Vasc. Biol. 2010; 30: 749-757.
  • 29. Knekt P., Kumpulainen J., Järvinen R. i wsp.: Flavonoid intake and risk of chronic diseases. Am. J. Clin. Nutr. 2002; 76: 560-568.
  • 30. Hirpara K.V, Aggarwal P., Mukherjee A.J. i wsp.: Quercetin and its derivatives: synthesis, pharmacological uses with special emphasis on anti-tumor properties and prodrug with enhanced bio-availability. Anticancer Agents Med. Chem. 2009; 9: 138-161.
  • 31. López-Lázaro M.: Flavonoids as anticancer agents: structure-activity relationship study. Curr. Med. Chem. Anticancer Agents 2002; 2: 691-714. "
  • 32. Galluzzo P., Martini C., Bulzomi P. i wsp.: Quercetin-induced apoptotic cascade in cancer cells: antioxidant versus estrogen receptor a-dependent mechanisms. Mol. Nutr. Food Res. 2009; 53: 699-708.
  • 33. Mamani-Matsuda M., Kauss T., Al-Kharrat A. i wsp.: Therapeutic and preventive properties of quercetin in experimental arthritis correlate with decreased macrophage inflammatory mediators. Biochem. Pharmacol. 2006; 72: 1304-1310.
  • 34. Nieman D.C., Henson D.A., Maxwell K.R. i wsp.: Effects of quercetin and EGCG on mitochondrial biogenesis and immunity. Med. Sci. Sports Exerc. 2009; 41: 1467-1475.
  • 35. Choi E.J., Bae S.C., Yu R. i wsp.: Dietary vitamin E and quer-cetin modulate inflammatory responses of collagen-induced arthritis in mice. J. Med. Food 2009; 12: 770-775.
  • 36. Kaul T.N., Middelton E. Jr, Ogra P.L.: Antiviral effect of flavonoids on human virus. J. Med. Virol. 1985; 15: 71-79.
  • 37. Middleton E. Jr: Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 1998; 439: 175-182.
  • 38. Ferrándiz M.L., Alcaraz M.J.: Anti-inflammatory activity and inhibition of arachidonic acid metabolism by flavonoids. Agents Actions 1991; 32: 283-288.
  • 39. Sheehan D.V, Lecrubier Y., Sheehan K.H. i wsp.: The MiniInternational Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998; 59 supl. 20: 22-33.
  • 40. Rice-Evans C.A.: Formation of free radicals and mechanisms of action in normal biochemical processes and pathological states. W: Rice-Evans C.A., Burdone R.H. (red.): Free Radical Damage and its Control. Elsevier, Amsterdam 1994: 131-153.
  • 41. Wachowicz B., Kustron J.: Effect of cisplatin on lipid peroxidation in pig blood platelets. Cytobios 1992; 70: 41-47.
  • 42. Farombi E.O., Onyema O.O.: Monosodium glutamate-induced oxidative damage and genotoxicity in the rat: modulatory role of vitamin C, vitamin E and quercetin. Hum. Exp. Toxicol. 2006, 25: 251-259.
  • 43. Gakhramanov F.S.: Effect of natural antioxidants on antioxidant activity and lipid peroxidation in eye tissue of rabbits with chemical burns. Bull. Exp. Biol. Med. 2005; 140: 289-291.
  • 44. Yamamoto Y., Oue E.: Antihypertensive effect of quercetin in rats fed with a high-fat high-sucrose diet. Biosci. Biotech-nol. Biochem. 2006; 70: 933-939.
  • 45. Yeomans VC., Linseisen J., Wolfram G.: Interactive effects of polyphenols, tocopherol and ascorbic acid on the Cu2+-mediated oxidative modification of human low density lipoproteins. Eur. J. Nutr. 2005; 44: 422-428.
  • 46. Rahman I., Adcock I.M.: Oxidative stress and redox regulation of lung inflammation in COPD. Eur. Respir. J. 2006; 28: 219-242.
  • 47. Dietrich-Muszalska A., Olas B.: Modifications of blood platelet proteins of patients with schizophrenia. Platelets 2009; 20: 90-96.
  • 48. Dietrich-Muszalska A., Olas B., Głowacki R., Bald E.: Oxida-tive/nitrative modifications of plasma proteins and thiols from patients with schizophrenia. Neuropsychobiology 2009; 59: 1-7.
  • 49. Lohr J.B., Cadet J.L., Lohr M.A. i wsp.: Vitamin E in the treatment of tardive dyskinesia: the possible involvement of free radical mechanisms. Schizophr. Bull. 1988; 14: 291-296.
  • 50. Bai O., Wei Z., Lu W. i wsp.: Protective effects of atypical antipsychotic drugs on PC12 cells after serum withdrawal. J. Neu-rosci. Res. 2002; 69: 278-283.
  • 51. Wei Z., Bai O., Richardson J.S. i wsp.: Olanzapine protects PC12 cells from oxidative stress induced by hydrogen peroxide. J. Neurosci. Res. 2003; 73: 364-368.
  • 52. Qing H., Xu H., Wei Z. i wsp.: The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur. J. Neurosci. 2003; 17: 1563-1570.
  • 53. Dietrich-Muszalska A., Kopka J., Kropiwnicki P. i wsp.: The effect of quetiapine on the in vitro serum concentration of free thiols and thiobarbituric acid-reacting substances. Psy-chiatr. Psychol. Klin. 2013; 13: 145-153.
  • 54. Dietrich-Muszalska A., Kwiatkowska A., Kopka J. i wsp.: The assessment of amisulpride effects in vitro on plasma thiol grups. Psychiatr. Psychol. Klin. 2012; 12: 247-254.
  • 55. Dietrich-Muszalska A., Kopka J., Kontek B., Kwiatkowska A.: The effects of therapeutic concentrations of ziprasidone on free thiols and thiobarbituric acid reactive substances levels in human plasma - in vitro studies. Psychiatr. Psychol. Klin. 2012; 12: 237-246.
  • 56. Dietrich-Muszalska A., Kontek B.: Lipid peroxidation in patients with schizophrenia. Psychiatry Clin. Neurosci. 2010; 64: 469-475.
  • 57. Dietrich-Muszalska A., Kopka J., Kwiatkowska A.: The effects of ziprasidone, clozapine and haloperidol on lipid peroxidation in human plasma (in vitro): comparison. Neurochem. Res. 2013; 38: 1490-1495.
  • 58. Kropp S., Kern V, Lange K. i wsp.: Oxidative stress during treatment with first- and second generation antipsychotics. J. Neuropsych. Clin. Neurosci. 2005; 17: 227-231.
  • 59. Bartosz G.: Druga twarz tlenu. Wolne rodniki w przyrodzie. PWN, Warszawa 2013.
  • 60. Bartosz G.: Total antioxidant capacity. Adv. Clin. Chem. 2003; 37: 219-292.
  • 61. American Society of Health-System Pharmacists: AHFS Drug Information 2014.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ebb6f74a-d653-432f-a9b6-84abedc21219
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.