PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 153 | 2 | 205-215
Article title

Analytical models for quark stars with the MIT Bag model equation of state

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Two classes of exact solutions to the Einstein-Maxwell system is found in terms of elementary function. This is achieved by choosing a particular form for the measure of anisotropy with the MIT bag model equation of state relating the radial pressure to the energy density consistent with quark stars. These solutions contain the models found previously in the limit of vanishing charge/measure of anisotropy. Isotropic exact solutions regained include models by Komathiraj and Maharaj; Mak and Harko; and Misner and Zapolsky. A physical analysis of the matter and electromagnetic variables indicates that the model is well behaved and regular.
Discipline
Year
Volume
153
Issue
2
Pages
205-215
Physical description
Contributors
author
  • Department of Mathematical Sciences, Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sammanthurai, Sri Lanka
References
  • [1] N. Itoh. Hydrostatic equilibrium of hypothetical quark stars. Prog. Theor. Phys. 44, 291-292, 1970
  • [2] Chodos, R. L. Jaffe, K. Johnson, C. B. Thorm, V. F. Weisskopf. Baryon structure in the bag theory. Phys. Rev. D. 10, 2599, 1974
  • [3] L. Herrera, N. O. Santos. Local anisotropy in self-gravitating systems. Phys. Rep. 286, 53-130, 1997
  • [4] M. Cosenza, L. Herrera, M. Esculpi, L. Witten. Some models of anisotropic spheres in general relativity. Journal of Mathematical Physics, 22(1), 118, 1981
  • [5] M. K. Gokhroo, A. L. Mehra. Anisotropic spheres with variable energy density in general relativity. Gen. Rel. Grav. 26(1), 75-84, 1994
  • [6] F. Weber. Strange quark matter and compact stars. Prog. Part. Nucl. Phys. 54, 193-288, 2005
  • [7] M. Malaver. Models for Quark Stars with Charged Anisotropic Matter. Research Journal of Modelling and Simulation, 1, 65, 2014
  • [8] M. Malaver, Analytical models for quark stars with electric field. World Scientific News, 89, 39-47, 2017
  • [9] M. Takisa, S. Ray, S. D. Maharaj. Charged compact objects in the linear regime. Astrophysics and Space Science, 350, 733-740, 2014
  • [10] C. Paul, P. K. Chattopadhyay, S. Karmakar, R. Tikekar. Relativistic strange stars with anisotropy. Mod. Phys. Lett. A. 26, 575-587, 2011
  • [11] M. K. Mak, T. Harko. Quark stars admitting a one-parameter group of conformal motions. Int. J. Mod. Phys. D. 13, 149, 2004
  • [12] K. Komathiraj, S. D. Maharaj. Analytical models for quark stars. Int. J. Mod. Phys. D. 16, 1803-1811, 2007
  • [13] S. D. Maharaj, J. M. Sunzu, S. Ray, Some simple models for quark stars. Eur. Phys. J. Plus. 129, 3, 2014
  • [14] J. M. Sunzu, S. D. Maharaj, S. Ray. Quark star model with charged anisotropic matter. Astrophysics and Space Science, 354, 517- 524, 2014
  • [15] M. Malaver. Generalized nonsingular model for compact stars electrically charged. World Scientific News, 92, 327-339, 2018
  • [16] K. Dev, M. Gliser, Anisotropic Stars: Exact Solutions. Gen. Rel. Grav. 34, 1793-1818, 2002
  • [17] M. Esculpi, E. Aloma. Conformal anisotropic relativistic charged fluid spheres with a linear equation of state. Eur. Phys. J. C. 67, 521-532, 2010
  • [18] T. Harko, M. K. Mak. Anisotropic relativistic stellar models. Annalen Phys. 11, 3, 2002
  • [19] M. K. Mak, T. Harko. Anisotropic stars in general relativity. Proc. Roy. Soc. Lond. A. 459, 393, 2003
  • [20] M. Kalam, A. A. Usmani, F. Rahaman, M. Hossein, I. Karar, R. Sharma. A Relativistic Model for Strange Quark Star. Int. J. Theor. Phys. 52, 3319-3328, 2013
  • [21] M. C. Durgapal, R. Bannerji. New analytical stellar model in general relativity. Phys. Rev. D. 27, 328, 1983
  • [22] W. Misner, H. S. Zapolsky. High-Density Behavior and Dynamical Stability of Neutron Star Models. Phys. Rev. Lett. 12, 635, 1964
  • [23] M. S. R. Delgaty, K. Lake. Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations. Comput. Phys. Commun. 115, 395-415, 1998
  • [24] R. Chan, L. Herrera, N. O. Santos. Dynamical instability in the collapse of anisotropic matter. Class. Quantum Grav. 9, L133, 1992
  • [25] H. Heintzmann, W. Hillebrandt. Neutron stars with an anisotropic equation of state: mass, redshift and stability. Astron. & Astrophys. 38, 51-55, 1975
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e9a7cfae-3901-4c00-8d61-fd1f1f4edd54
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.