Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 15 | 2 | 99–104

Article title

Angiogenic cytokines VEGF, TGF-β1, IL-8 and TNF secretion by human ovarian cancer cells

Content

Title variants

PL
Wydzielanie angiogennych cytokin VEGF, TGF-β1, IL-8 iTNF przez ludzkie komórki nowotworów jajnika

Languages of publication

EN

Abstracts

EN
Objectives: Angiogenesis is a process that is indispensable in cancer progression. A complex network of tumor and microenvironment stimuli regulate angiogenesis. VEGF, TGF-β1, IL-8 and TNF belong to the angiogenic factors that are key points in vessel formation. The aim of the study was to assess h-VEGF, TGF-β1, IL-8 and TNF secretion by human ovarian cell lines. Material and methods: OVA 2, OVA 4, OVA 9, OVA 11 and OVA 14 cell lines were established in our laboratory. The cells derived from primary and metastatic tumors of epithelial and non-epithelial origin. SK-OV-3, MDAH 2774, CAOV-1 and OVP-10 were the cell lines obtained from other sources. The concentration of VEGF, TGF-β1 and IL-8 was determined in culture supernatants by using the ELISA tests. Results: OVA 11 secreted all the evaluated cytokines. MDAH 2774 was the source of h-VEGF, TGF-β1, IL-8. SK-OV-3 secreted h-VEGF and IL-8. OVA 4 secreted TGF-β1 and TNF. TNF was the only studied cytokine secreted by CAOV-1, OVA 2 and OVA 9 cell lines. OVA 14 did not secret any of the cytokines. Conclusions: The investigated cell lines present heterogeneous profile of angiogenic cytokine secretion and seem to be an interesting set of models for the study of angiogenic signaling, or target therapy.
PL
Cel: Angiogeneza jest procesem niezbędnym do progresji raka. Złożona sieć bodźców pochodzących od guza i z mikrośrodowiska reguluje angiogenezę. VEGF, TGF-β1, IL-8 i TNF należą do czynników angiogennych, które odgrywają kluczową rolę w tworzeniu naczyń. Celem pracy była ocena wydzielania h-VEGF, TGF-β1, IL-8 i TNF przez ludzkie linie raka jajnika. Materiał i metoda: Linie OVA 2, OVA 4, OVA 9, OVA 11 oraz OVA 14 zostały ustalone samodzielnie. Komórki pochodziły z pierwotnych lub przerzutowych guzów jajnika pochodzenia nabłonkowego lub nienabłonkowego. Linie SK-OV-3, MDAH 2774, CAOV-1 oraz OVP-10 pochodziły z innych źródeł. Stężenie VEGF, TGF-β1 i IL-8 określano w supernatantach hodowli komórkowych w teście ELISA. Wyniki: Linia OVA 11 wydzielała wszystkie badane cytokiny. Linia MDAH 2774 była źródłem h-VEGF, TGF-β1, IL-8. Linia SK-OV-3 wydzielała h-VEGF oraz IL-8. Linia OVA 4 wydzielała TGF-β1 i TNF. TNF był jedyną cytokiną wydzielaną przez linie CAOV-1, OVA 2 oraz OVA 9. Linia OVA 14 nie wydzielała żadnej spośród badanych cytokin. Wnioski: Badane linie komórkowe stanowią heterogenną grupę nowotworów wydzielających cytokiny o właściwościach angiogennych i wydają się interesującym panelem do badań nad procesami angiogenezy czy terapii celowanej.

Keywords

EN

Discipline

Year

Volume

15

Issue

2

Pages

99–104

Physical description

Contributors

author
  • 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
  • 2nd Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland

References

  • 1. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.
  • 2. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.
  • 3. Liekens S, De Clercq E, Neyts J: Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253–270.
  • 4. Akhurst RJ, Derynck R: TGF-β signaling in cancer – a doubleedged sword. Trends Cell Biol 2001; 11: S44–S51.
  • 5. Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.
  • 6. Hagedorn HG, Bachmeier BE, Nerlich AG: Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-β in invasive carcinomas (Review). Int J Oncol 2001; 18: 669–681.
  • 7. Watanabe H, Iwase M, Ohashi M et al.: Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol 2002; 38: 670–679.
  • 8. Li A, Dubey S, Varney ML et al.: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170: 3369–3376.
  • 9. Beutler BA: The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999; 57: 16–21.
  • 10. Beckner ME: Factors promoting tumor angiogenesis. Cancer Invest 1999; 17: 594–623.
  • 11. Torisu H, Ono M, Kiryu H et al.: Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFα and IL-1α. Int J Cancer 2000; 85: 182–188.
  • 12. Rüegg C, Yilmaz A, Bieler G et al.: Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat Med 1998; 4: 408–414.
  • 13. Brown LF, Berse B, Jackman RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86–91.
  • 14. Brown LF, Berse B, Jackman RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993; 53: 4727–4735.
  • 15. Lengyel E: Ovarian cancer development and metastasis. Am J Pathol 2010; 177: 1053–1064.
  • 16. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000; 100: 57–70.
  • 17. Lenz HJ: Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 2005; 19 (Suppl 3): 17–25.
  • 18. Shi J, Wei PK: Interleukin-8: a potent promoter of angiogenesis in gastric cancer. Oncol Lett 2016; 11: 1043–1050.
  • 19. Fujisawa N, Sakao Y, Hayashi S et al.: α-Chemokine growth factors for adenocarcinomas; a synthetic peptide inhibitor for α-chemokines inhibits the growth of adenocarcinoma cell lines. J Cancer Res Clin Oncol 2000; 126: 19–26.
  • 20. Burkholder B, Huang RY, Burgess R et al.: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta 2014; 1845: 182–201.
  • 21. Wang Y, Qu Y, Niu XL et al.: Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 2011; 56: 365–375.
  • 22. Sonoda T, Kobayashi H, Kaku T et al.: Expression of angiogenesis factors in monolayer culture, multicellular spheroid and in vivo transplanted tumor by human ovarian cancer cell lines. Cancer Lett 2003; 196: 229–237.
  • 23. Wang Y, Xu RC, Zhang XL et al.: Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine 2012; 59: 145–155.
  • 24. Desai S, Laskar S, Pandey BN: Autocrine IL-8 and VEGF mediate epithelial–mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal 2013;
  • 25: 1780–1791. 25. Inan S, Vatansever S, Celik-Ozenci C et al.: Immunolocalizations of VEGF, its receptors flt-1, KDR and TGF-β’s in epithelial ovarian tumors. Histol Histopathol 2006; 21: 1055–1064.
  • 26. Gordinier ME, Zhang HZ, Patenia R et al.: Quantitative analysis of transforming growth factor beta 1 and 2 in ovarian carcinoma. Clin Cancer Res 1999; 5: 2498–2505.
  • 27. Wei H, Liu P, Swisher E et al.: Silencing of the TGF-β1 gene increases the immunogenicity of cells from human ovarian carcinoma. J Immunother 2012; 35: 267–275.
  • 28. Yang F, Chen Y, Shen T et al.: Stromal TGF-β signaling induces AR activation in prostate cancer. Oncotarget 2014; 5: 10854–10869.
  • 29. Kulbe H, Thompson R, Wilson JL et al.: The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67: 585–592.
  • 30. Kulbe H, Chakravarty P, Leinster DA et al.: A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2012; 72: 66–75.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e9134d5b-70d2-4a49-8d5f-17d47226f59b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.