Preferences help
enabled [disable] Abstract
Number of results
2017 | 15 | 2 | 99–104
Article title

Angiogenic cytokines VEGF, TGF-β1, IL-8 and TNF secretion by human ovarian cancer cells

Title variants
Wydzielanie angiogennych cytokin VEGF, TGF-β1, IL-8 iTNF przez ludzkie komórki nowotworów jajnika
Languages of publication
Objectives: Angiogenesis is a process that is indispensable in cancer progression. A complex network of tumor and microenvironment stimuli regulate angiogenesis. VEGF, TGF-β1, IL-8 and TNF belong to the angiogenic factors that are key points in vessel formation. The aim of the study was to assess h-VEGF, TGF-β1, IL-8 and TNF secretion by human ovarian cell lines. Material and methods: OVA 2, OVA 4, OVA 9, OVA 11 and OVA 14 cell lines were established in our laboratory. The cells derived from primary and metastatic tumors of epithelial and non-epithelial origin. SK-OV-3, MDAH 2774, CAOV-1 and OVP-10 were the cell lines obtained from other sources. The concentration of VEGF, TGF-β1 and IL-8 was determined in culture supernatants by using the ELISA tests. Results: OVA 11 secreted all the evaluated cytokines. MDAH 2774 was the source of h-VEGF, TGF-β1, IL-8. SK-OV-3 secreted h-VEGF and IL-8. OVA 4 secreted TGF-β1 and TNF. TNF was the only studied cytokine secreted by CAOV-1, OVA 2 and OVA 9 cell lines. OVA 14 did not secret any of the cytokines. Conclusions: The investigated cell lines present heterogeneous profile of angiogenic cytokine secretion and seem to be an interesting set of models for the study of angiogenic signaling, or target therapy.
Cel: Angiogeneza jest procesem niezbędnym do progresji raka. Złożona sieć bodźców pochodzących od guza i z mikrośrodowiska reguluje angiogenezę. VEGF, TGF-β1, IL-8 i TNF należą do czynników angiogennych, które odgrywają kluczową rolę w tworzeniu naczyń. Celem pracy była ocena wydzielania h-VEGF, TGF-β1, IL-8 i TNF przez ludzkie linie raka jajnika. Materiał i metoda: Linie OVA 2, OVA 4, OVA 9, OVA 11 oraz OVA 14 zostały ustalone samodzielnie. Komórki pochodziły z pierwotnych lub przerzutowych guzów jajnika pochodzenia nabłonkowego lub nienabłonkowego. Linie SK-OV-3, MDAH 2774, CAOV-1 oraz OVP-10 pochodziły z innych źródeł. Stężenie VEGF, TGF-β1 i IL-8 określano w supernatantach hodowli komórkowych w teście ELISA. Wyniki: Linia OVA 11 wydzielała wszystkie badane cytokiny. Linia MDAH 2774 była źródłem h-VEGF, TGF-β1, IL-8. Linia SK-OV-3 wydzielała h-VEGF oraz IL-8. Linia OVA 4 wydzielała TGF-β1 i TNF. TNF był jedyną cytokiną wydzielaną przez linie CAOV-1, OVA 2 oraz OVA 9. Linia OVA 14 nie wydzielała żadnej spośród badanych cytokin. Wnioski: Badane linie komórkowe stanowią heterogenną grupę nowotworów wydzielających cytokiny o właściwościach angiogennych i wydają się interesującym panelem do badań nad procesami angiogenezy czy terapii celowanej.
Physical description
  • 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
  • 2nd Department of Radiology, Medical University of Warsaw, Warsaw, Poland
  • 2nd Department of Obstetrics and Gynecology, Medical University of Warsaw, Warsaw, Poland
  • 1. Folkman J: Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.
  • 2. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4–6.
  • 3. Liekens S, De Clercq E, Neyts J: Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253–270.
  • 4. Akhurst RJ, Derynck R: TGF-β signaling in cancer – a doubleedged sword. Trends Cell Biol 2001; 11: S44–S51.
  • 5. Derynck R, Akhurst RJ, Balmain A: TGF-β signaling in tumor suppression and cancer progression. Nat Genet 2001; 29: 117–129.
  • 6. Hagedorn HG, Bachmeier BE, Nerlich AG: Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-β in invasive carcinomas (Review). Int J Oncol 2001; 18: 669–681.
  • 7. Watanabe H, Iwase M, Ohashi M et al.: Role of interleukin-8 secreted from human oral squamous cell carcinoma cell lines. Oral Oncol 2002; 38: 670–679.
  • 8. Li A, Dubey S, Varney ML et al.: IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 2003; 170: 3369–3376.
  • 9. Beutler BA: The role of tumor necrosis factor in health and disease. J Rheumatol Suppl 1999; 57: 16–21.
  • 10. Beckner ME: Factors promoting tumor angiogenesis. Cancer Invest 1999; 17: 594–623.
  • 11. Torisu H, Ono M, Kiryu H et al.: Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: possible involvement of TNFα and IL-1α. Int J Cancer 2000; 85: 182–188.
  • 12. Rüegg C, Yilmaz A, Bieler G et al.: Evidence for the involvement of endothelial cell integrin αVβ3 in the disruption of the tumor vasculature induced by TNF and IFN-γ. Nat Med 1998; 4: 408–414.
  • 13. Brown LF, Berse B, Jackman RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86–91.
  • 14. Brown LF, Berse B, Jackman RW et al.: Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in adenocarcinomas of the gastrointestinal tract. Cancer Res 1993; 53: 4727–4735.
  • 15. Lengyel E: Ovarian cancer development and metastasis. Am J Pathol 2010; 177: 1053–1064.
  • 16. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 2000; 100: 57–70.
  • 17. Lenz HJ: Antiangiogenic agents in cancer therapy. Oncology (Williston Park) 2005; 19 (Suppl 3): 17–25.
  • 18. Shi J, Wei PK: Interleukin-8: a potent promoter of angiogenesis in gastric cancer. Oncol Lett 2016; 11: 1043–1050.
  • 19. Fujisawa N, Sakao Y, Hayashi S et al.: α-Chemokine growth factors for adenocarcinomas; a synthetic peptide inhibitor for α-chemokines inhibits the growth of adenocarcinoma cell lines. J Cancer Res Clin Oncol 2000; 126: 19–26.
  • 20. Burkholder B, Huang RY, Burgess R et al.: Tumor-induced perturbations of cytokines and immune cell networks. Biochim Biophys Acta 2014; 1845: 182–201.
  • 21. Wang Y, Qu Y, Niu XL et al.: Autocrine production of interleukin-8 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cytokine 2011; 56: 365–375.
  • 22. Sonoda T, Kobayashi H, Kaku T et al.: Expression of angiogenesis factors in monolayer culture, multicellular spheroid and in vivo transplanted tumor by human ovarian cancer cell lines. Cancer Lett 2003; 196: 229–237.
  • 23. Wang Y, Xu RC, Zhang XL et al.: Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine 2012; 59: 145–155.
  • 24. Desai S, Laskar S, Pandey BN: Autocrine IL-8 and VEGF mediate epithelial–mesenchymal transition and invasiveness via p38/JNK-ATF-2 signalling in A549 lung cancer cells. Cell Signal 2013;
  • 25: 1780–1791. 25. Inan S, Vatansever S, Celik-Ozenci C et al.: Immunolocalizations of VEGF, its receptors flt-1, KDR and TGF-β’s in epithelial ovarian tumors. Histol Histopathol 2006; 21: 1055–1064.
  • 26. Gordinier ME, Zhang HZ, Patenia R et al.: Quantitative analysis of transforming growth factor beta 1 and 2 in ovarian carcinoma. Clin Cancer Res 1999; 5: 2498–2505.
  • 27. Wei H, Liu P, Swisher E et al.: Silencing of the TGF-β1 gene increases the immunogenicity of cells from human ovarian carcinoma. J Immunother 2012; 35: 267–275.
  • 28. Yang F, Chen Y, Shen T et al.: Stromal TGF-β signaling induces AR activation in prostate cancer. Oncotarget 2014; 5: 10854–10869.
  • 29. Kulbe H, Thompson R, Wilson JL et al.: The inflammatory cytokine tumor necrosis factor-α generates an autocrine tumor-promoting network in epithelial ovarian cancer cells. Cancer Res 2007; 67: 585–592.
  • 30. Kulbe H, Chakravarty P, Leinster DA et al.: A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment. Cancer Res 2012; 72: 66–75.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.