PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 88 | 2 | 138-151
Article title

A DFT study or the relationship between the electronic structure and the antiplasmodial activity of a series of 4-anilino-2-trichloromethylquinazolines derivatives

Content
Title variants
Languages of publication
EN
Abstracts
EN
A theoretical study of the relationships between the electronic structure and the antiplasmodial activity of a series of 4-anilino-2-trichloromethylquinazolines derivatives on plasmodium genes was carried out. The electronic structure of molecules was calculated at the B3LYP/6-31G(d,p) level with full geometry optimization. A statistically significant equation (R = 0.98, R² = 0.96, adj-R² = 0.94, F (12, 20) = 43.49 (p < 0.000001) and SD = 0.12) was obtained relating the variation of the biological activity with the variation of a set of local atomic reactivity indices. Based on the analysis of the results, a two-dimensional antiplasmodial pharmacophore was proposed. The process seems to be orbital and charge controlled.
Year
Volume
88
Issue
2
Pages
138-151
Physical description
Contributors
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Laboratory of Theoretical Chemistry and Molecular Spectroscopy, Faculty of Sciences and Techniques, University of Abomey - Calavi, 03 BP 3409 Cotonou, Benin
  • Quantum Pharmacology Unit, Department of Chemistry, Faculty of Science, University of Chile, Las Palmeras 3425, Nuñoa, Santiago 7800003, Santiago, Chile
References
  • [1] E.A. Ashley, J. Recht, N.J. White, Primaquine: the risks and the benefits, Malar. J., 13 (2014) 418.
  • [2] M. Mishra, V.K. Mishra, V. Kashaw, A.K. Iyer, S.K. Kashaw, Comprehensive review on various strategies for antimalarial drug discovery, Eur. J. Med. Chem., 125 (2017) 1300–1320.
  • [3] World Malaria Report 2016: Summary, Geneva, 2017.
  • [4] A.L. Wilson, on behalf of the Ipt. Taskforce, A Systematic Review and Meta-Analysis of the Efficacy and Safety of Intermittent Preventive Treatment of Malaria in Children (IPTc), PLOS ONE, 6 (2011) 1–12.
  • [5] M.M. Meremikwu, S. Donegan, D. Sinclair, E. Esu, C. Oringanje, Intermittent preventive treatment for malaria in children living in areas with seasonal transmission, Cochrane Database Syst. Rev., 2 (2012).
  • [6] Guidelines on the Quality, Safety and Effectiveness of Recombinant Malaria Vaccines Targeting the Pre-erythrocytic and Blood Forms of Plasmodium falciparum, 2016. http://www.who.int/biologicals/vaccines/Malaria_Guidelines_TRS_980_Annex_3.pdf
  • [7] V.S. Moorthy, W.R. Ballou, Immunological mechanisms underlying protection mediated by RTS,S: a review of the available data, Malar. J., 8 (2009) 312.
  • [8] A. Leach, J. Vekemans, M. Lievens, O. Ofori-Anyinam, C. Cahill, S. Owusu-Agyei, S. Abdulla, E. Macete, P. Njuguna, B. Savarese, C. Loucq, W.R. Ballou, Design of a phase III multicenter trial to evaluate the efficacy of the RTS,S/AS01 malaria vaccine in children across diverse transmission settings in Africa, Malar. J., 10 (2011) 224.
  • [9] B. Portet, Recherche bioguidée de molecules antipaludiques d’une plante guyanaise Piper hostmannianum var berbicense, Université Toulouse III - Paul Sabatier, 2007.
  • [10] L. Tilley, J. Straimer, N.F. Gnädig, S.A. Ralph, D.A. Fidock, Artemisinin Action and Resistance in Plasmodium falciparum, Trends Parasitol., 32 (2016) 682–696.
  • [11] P. Olliaro, Mode of action and mechanisms of resistance for antimalarial drugs, Pharmacol. Ther., 89 (2001) 207–219.
  • [12] P. Verhaeghe, A. Dumètre, C. Castera-Ducros, S. Hutter, M. Laget, C. Fersing, M. Prieri, J. Yzombard, F. Sifredi, S. Rault, P. Rathelot, P. Vanelle, N. Azas, 4-Thiophenoxy-2-trichloromethyquinazolines display in vitro selective antiplasmodial activity against the human malaria parasite Plasmodium falciparum, Bioorg. Med. Chem. Lett., 21 (2011) 6003–6006.
  • [13] A. Shrivastava, A. Shrivastava, 2D-QSAR Studies of Novel Quinazoline Derivatives for Their Potent Antimalarial Activity, Int. J. Chem. Pharm. Rev. Res., 2 (2015) 1–10.
  • [14] C. Mendoza-Martínez, J. Correa-Basurto, R. Nieto-Meneses, A. Márquez-Navarro, R. Aguilar-Suárez, M.D. Montero-Cortes, B. Nogueda-Torres, E. Suárez-Contreras, N. Galindo-Sevilla, Á. Rojas-Rojas, A. Rodriguez-Lezama, F. Hernández-Luis, Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents, Eur. J. Med. Chem., 96 (2015) 296–307.
  • [15] J. Desroches, C. Kieffer, N. Primas, S. Hutter, A. Gellis, H. El-Kashef, P. Rathelot, P. Verhaeghe, N. Azas, P. Vanelle, Discovery of new hit-molecules targeting Plasmodium falciparum through a global SAR study of the 4-substituted-2-trichloromethylquinazoline antiplasmodial scaffold, Eur. J. Med. Chem., 125 (2017) 68–86.
  • [16] A. Gellis, N. Primas, S. Hutter, G. Lanzada, V. Remusat, P. Verhaeghe, P. Vanelle, N. Azas, Looking for new antiplasmodial quinazolines: DMAP-catalyzed synthesis of 4-benzyloxy- and 4-aryloxy-2-trichloromethylquinazolines and their in vitro evaluation toward Plasmodium falciparum, Eur. J. Med. Chem., 119 (2016) 34–44.
  • [17] Y. Kabri, N. Azas, A. Dumètre, S. Hutter, M. Laget, P. Verhaeghe, A. Gellis, P. Vanelle, Original quinazoline derivatives displaying antiplasmodial properties, Eur. J. Med. Chem., 45 (2010) 616–622.
  • [18] A. Mishra, K. Srivastava, R. Tripathi, S.K. Puri, S. Batra, Search for new pharmacophores for antimalarial activity Part III: Synthesis and bioevaluation of new 6-thioureido-4-anilinoquinazolines, Eur. J. Med. Chem., 44 (2009) 4404–4412.
  • [19] M.K. Kathiravan, N. Vidyasagar, R. Khiste, A. Chote, K. Jain, Synthesis and antihyperlipidemic activity of some novel 4-substituted-2-substitutedmethyltriazino[6,1-b]quinazolin-10-ones and 2,4-disubstituted-6,7-dimethoxy quinazoline, Arab. J. Chem., 9 (2016) S395–S403.
  • [20] P. Verhaeghe, N. Azas, M. Gasquet, S. Hutter, C. Ducros, M. Laget, S. Rault, P. Rathelot, P. Vanelle, Synthesis and antiplasmodial activity of new 4-aryl-2-trichloromethylquinazolines, Bioorg. Med. Chem. Lett., 18 (2008) 396–401.
  • [21] P. Verhaeghe, N. Azas, S. Hutter, C. Castera-Ducros, M. Laget, A. Dumètre, M. Gasquet, J.-P. Reboul, S. Rault, P. Rathelot, P. Vanelle, Synthesis and in vitro antiplasmodial evaluation of 4-anilino-2-trichloromethylquinazolines, Bioorg. Med. Chem., 17 (2009) 4313–4322.
  • [22] S. Madhavi, R. Sreenivasulu, J.P. Yazala, R.R. Raju, Synthesis of chalcone incorporated quinazoline derivatives as anticancer agents, Saudi Pharm. J., 25 (2017) 275–279.
  • [23] T. Fröhlich, C. Reiter, M.M. Ibrahim, J. Beutel, C. Hutterer, I. Zeitträger, H. Bahsi, M. Leidenberger, O. Friedrich, B. Kappes, T. Efferth, M. Marschall, S.B. Tsogoeva, Synthesis of Novel Hybrids of Quinazoline and Artemisinin with High Activities against Plasmodium falciparum, Human Cytomegalovirus, and Leukemia Cells, ACS Omega, 2 (2017) 2422–2431.
  • [24] C. Mendoza-Martínez, N. Galindo-Sevilla, J. Correa-Basurto, V.M. Ugalde-Saldivar, R.G. Rodríguez-Delgado, J. Hernández-Pineda, C. Padierna-Mota, M. Flores-Alamo, F. Hernández-Luis, Antileishmanial activity of quinazoline derivatives: Synthesis, docking screens, molecular dynamic simulations and electrochemical studies, Eur. J. Med. Chem., 92 (2015) 314–331.
  • [25] J.S. Gómez-Jeria, 45 Years of the KPG Method: A Tribute to Federico Peradejordi, J. Comput. Methods Mol. Des., 7 (2017) 17–37.
  • [26] J.S. Gómez Jeria, La Pharmacologie Quantique, Boll Chim Farm., 121 (1982) 619–625.
  • [27] J.S. Gomez-Jeria, On some problems in quantum pharmacology I The partition functions, Int. J. Quantum Chem., 23 (1983) 1969–1972.
  • [28] J.S. Gómez Jeria, The use of competitive ligand binding results in QSAR studies, Il Farm., 40 (n.d.) 299–302.
  • [29] J.S. Gómez-Jeria, Modeling the Drug-Receptor Interaction in Quantum Pharmacology, in: J. Maruani (Ed.), Mol. Phys. Chem. Biol., Springer Netherlands, Dordrecht, 1989: pp. 215–231.
  • [30] J.S. Gómez Jeria, Elements of Molecular Electronic Pharmacology, 1st ed., Ediciones Sokar, Santiago de Chile, 2013.
  • [31] J.S. Gómez Jeria, A new set of local reactivity indices within the Hartree-Fock-Roothaan and density functional theory frameworks, Can. Chem. Trans., 1 (2013) 25–55.
  • [32] J.S. Gómez Jeria, M. Flores-Catalán, Quantum-chemical Modeling of the Relationships between Molecular Structure and In Vitro Multi-Step, Multimechanistic Drug Effects HIV-1 Replication Inhibition and Inhibition of Cell Proliferation as Examples, Can. Chem. Trans., 1 (2013) 215–237.
  • [33] T. Bruna-Larenas, J.S. Gómez-Jeria, A DFT and Semiempirical Model-Based Study of Opioid Receptor Affinity and Selectivity in a Group of Molecules with a Morphine Structural Core, Int. J. Med. Chem., (2012) 16.
  • [34] J.S. Gómez-Jeria, P. Castro-Latorre, A Density Functional Theory analysis of the relationships between the Badger index measuring carcinogenicity and the electronic structure of a series of substituted Benz[a]anthracene derivatives, with a suggestion for a modified carcinogenicity index, Chem. Res. J., 2 (2017) 112–126.
  • [35] J.S. Gómez Jeria, R. Ovando-Guerrero, A DFT Study of the Relationships between Electronic Structure and Central Benzodiazepine Receptor Affinity in a group of Imidazo[1,5-a]quinoline derivatives and a group of 3-Substituted 6-Phenyl-4H-imidazo[1,5-a]-[1,4]benzodiazepines and related compounds, Chem. Res. J., 2 (2017) 170–181.
  • [36] A.G. Kpotin, G.S. Atohoun, A.U. Kuevi, A. Houngue-Kpota, J.-B. Mensah, J. Gómez Jeria, A quantum-chemical study of the relationships between electronic structure and anti- HIV-1 activity of a series of HEPT derivatives, J. Chem. Pharm. Res., 8 (2016) 1019–1026.
  • [37] G. Kpotin, S.Y.G. Atohoun, A.U. Kuevi, A. Kpota-Hounguè, J.-B. Mensah, J.S. Gómez Jeria, A Quantum-Chemical study of the Relationships between Electronic Structure and Trypanocidal Activity against Trypanosoma Brucei Brucei of a series of Thiosemicarbazone derivatives, Pharm. Lett., 8 (2016) 215–222.
  • [38] J.S. Gómez-Jeria, C. Moreno-Rojas, Dissecting the drug-receptor interaction with the Klopman-Peradejordi-Gómez (KPG) method I The interaction of 2,5-dimethoxyphenethylamines and their N-2-methoxybenzyl-substituted analogs with 5-HT1A serotonin receptors, Chem. Res. J., 2 (2017) 27–41.
  • [39] A.G. Kpotin, G. Kankinou, U. Kuevi, J.S. Gómez Jeria, J.-B. Mensah, A Theoretical Study of the Relationships between Electronic Structure and Inhibitory Effects of Caffeine Derivatives on Neoplastic Transformation, Int. Res. J. Pure Appl. Chem., 14 (2017) 1–10.
  • [40] J.S. Gómez-Jeria, S. Abarca-Martínez, A theoretical approach to the cytotoxicity of a series of β-carbolinedithiocarbamate derivatives against prostatic cancer (DU-145), breast cancer (MCF-7), human lung adenocarcinoma (A549) and cervical cancer (HeLa) cell lines, Pharma Chem., 8 (2016) 507–526.
  • [41] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.J.A. Montgomery, T. Vreven, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G03 Rev E01, Gaussian:, Pittsburgh, PA, USA, 2007.
  • [42] J.S. Gómez Jeria, D-Cent-QSAR: A program to generate Local Atomic Reactivity Indices from Gaussian 03 log files 10, Santiago de Chile, 2014.
  • [43] J.S. Gómez-Jeria, An empirical way to correct some drawbacks of Mulliken Population Analysis (Erratum in: J Chil Chem Soc, 55, 4, IX, 2010), J. Chil. Chem. Soc., 54 (2009) 482–485.
  • [44] J.S. Gómez Jeria, Tables of proposed values for the Orientational Parameter of the Substituent II, Res. J. Pharm. Biol. Chem. Sci., 7 (2016) 2258–2260.
  • [45] J.S. Gómez Jeria, Tables of proposed values for the Orientational Parameter of the Substituent I Monoatomic, Diatomic, Triatomic, n-CnH2n+1, O-n-CnH2n+1, NRR’, and Cycloalkanes (with a single ring) substituents, Res. J. Pharm. Biol. Chem. Sci., 7 (2016) 288–294.
  • [46] Statsoft, Statistica 80, 2300 East 14 th St. Tulsa, OK 74104, USA, 1984.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e76b8fd1-d840-41d7-9672-dda7fdb89d0d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.