Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2021 | 26 | 80-88

Article title

LONG-TERM RADIATION-INDUCED EFFECTS ON SOLID STATE CHITOSAN

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Treatment of chitosan with ionising radiation is one of the methods by which it is modified for various applications. However, in the case of chitosan irradiated in the solid state, the radicals formed during irradiation can be stabilised in its crystalline phase and subsequently cause post-irradiation changes. It has been observed that further degradation of the polymer occurs during storage of the irradiated polymer, resulting in an increase in oxidation products and a decrease in deacetylation degree. This effect results from the transformation of radicals leading to the formation of stable nitroxyl radicals, a process observed years after irradiation.

Contributors

  • Institute of Nuclear Chemistry and Technology

References

  • Chmielewski A.G. and Berejka A.J., Radiation sterilization centers worldwide, in Trends in radiation sterilization. 2008, International Atomic Energy Agency: Vienna. http://www-pub.iaea.org/MTCD/publications/PDF/Pub1313_web.pdf
  • Chmielewski A.G.; (2010) Chitosan and radiation chemistry. Radiation Physics and Chemistry 79(3): p. 272–275. DOI: 10.1016/j.radphyschem.2009.11.002
  • Mao S., Shuai X., Unger F., Simon M., Bi D., and Kissel T.; (2004) The depolymerization of chitosan: effects on physicochemical and biological properties. International Journal of Pharmaceutics 281(1): p. 45–54. DOI: 10.1016/j.ijpharm.2004.05.019
  • Feng T., Du Y., Li J., Hu Y., Kennedy J.F.; (2008) Enhancement of antioxidant activity of chitosan by irradiation. Carbohydrate Polymers 73: p. 126–132. DOI: 10.1016/j.carbpol.2007.11.003
  • Chung Y.C. and Chen C.Y.; (2008) Antibacterial characteristics and activity of acidsoluble chitosan. Bioresource Technology 99(8): p. 2806–2814. DOI: 10.1016/j.biortech.2007.06.044
  • Czechowska-Biskup R., Rokita B., Ulanski P., and Rosiak J.M.; (2005) Radiationinduced and sonochemical degradation of chitosan as a way to increase its fatbinding capacity. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 236(1–4): p. 383-390. DOI: 10.1016/j.nimb.2005.04.002
  • Gryczka U., Gawronska H., Migdal W., Gawronski S.W., and Chmielewski A.G.; (2008) Study on biological activity of chitosan after radiation processing. Nukleonika 53: p. S73–S76.
  • Pasanphan W., Rattanawongwiboon T., Choofong S., Güven O., and Katti K.K.; (2015) Irradiated chitosan nanoparticle as a water-based antioxidant and reducing agent for a green synthesis of gold nanoplatforms. Radiation Physics and Chemistry 106: p. 360–370. DOI: 10.1016/j.radphyschem.2014.08.023
  • Benamer S., Mahlous M., Tahtat D., Nacer-Khodja A., Arabi M., Lounici H., and Mameri N.; (2011) Radiation synthesis of chitosan beads grafted with acrylic acid for metal ions sorption. Radiation Physics and Chemistry 80(12): p. 1391–1397. DOI: 10.1016/j.radphyschem.2011.06.013
  • Mozalewska W., Czechowska-Biskup R., Olejnik A.K., Wach R.A., Ulański P., and Rosiak J.M.; (2017) Chitosan-containing hydrogel wound dressings prepared by radiation technique. Radiation Physics and Chemistry 134: p. 1–7. DOI: 10.1016/j.radphyschem.2017.01.003
  • Shariatinia Z.; (2019) Pharmaceutical applications of chitosan. Advances in Colloid and Interface Science 263: p. 131–194. DOI: 10.1016/j.cis.2018.11.008
  • Latańska I., Kolesińska B., Draczyński Z., and Sujka W.; (2020) The use of chitin and chitosan in manufacturing dressing materials. Progress on Chemistry and Application of Chitin and its Derivatives 25: p. 16–36. DOI: 10.15259/PCACD.25.002
  • Kang B., Dai Y-d., Zhang H-q., and Chen D.; (2007) Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polymer Degradation and Stability 92(3): p. 359–362. DOI: 10.1016/j.polymdegradstab.2006.12.006
  • Ulanski P. and von Sonntag C.; (2000) OH-Radical-induced chain scission of chitosan in the absence and presence of dioxygen. Journal of the Chemical Society, Perkin Transactions 2(10): p. 2022–2028. DOI: 10.1039/B003952G
  • Hien N.Q., Phu D.V., Duy NN, and Lan N.T.K.; (2012) Degradation of chitosan in solution by gamma irradiation in the presence of hydrogen peroxide. Carbohydrate Polymers 87(1): p. 935–938. DOI: 10.1016/j.carbpol.2011.08.018
  • Rosiak J., Ulański P., Kucharska M., Dutkiewicz J., and Judkiewicz L.; (1992) Radiation sterilization of chitosan sealant for vascular prostheses. Journal of Radioanalytical and Nuclear Chemistry 159(1): p. 87–96. DOI: 10.1007/BF02041021
  • Al-Assaf S., Gulrez S.K.H., Czechowska-Biskup R., Wach R.A., Rosiak J., and Ulanski P., Radiation modification of polisaccharides, in The Radiation Chemistry of Polysaccharides. 2016, INTERNATIONAL ATOMIC ENERGY AGENCY: Vienna. https://www-pub.iaea.org/MTCD/Publications/PDF/P1731_web.pdf
  • Gryczka U., Dondi D., Chmielewski A.G., Migdal W., Buttafava A., and Faucitano A.; (2009) The mechanism of chitosan degradation by gamma and e-beam irradiation. Radiation Physics and Chemistry 78(788): p. 543–548. DOI: 10.1016/j.radphyschem.2009.03.081
  • Kabanov VY, Feldman VI, Ershov BG, Polikarpov AI, Kiryukhin DP, and Apel’ PY; (2009) Radiation chemistry of polymers. High Energy Chemistry 43(1): p. 1–18. DOI: 10.1134/S0018143909010019
  • Chmielewski A.G., Migdał W., Świętosławski J., Świętosławski J., Jakubaszek U., Tarnowski T., Chemical-radiation degradation of natural oligoaminopolysaccharides for agricultural applications. Radiation Physics and Chemistry 76 (2007) 1840–1842. DOI: 10.1016/j.radphyschem.2007.04.013
  • Axel F.S.; (1976) Biophysics with Nitroxyl Radicals. Biophysics of Structure and Mechanism 2: p. 181–218. DOI: 10.1007/BF00535367
  • Tabaczar S., Talar M., and Gwoździński K.; (2011) Nitroksydy jako antyoksydanty – możliwości ich zastosowania w celach chemioprewencyjnych poraz radioprotekcyjnych. Postepy Higieny i Medycyny Doświadczalnej 65: p. 46–54.
  • Taşkın P., Canısağ H., and Şen M.; (2014) The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiation Physics and Chemistry 94: p. 236–239. DOI: 10.1016/j.radphyschem.2013.04.007
  • Czechowska-Biskup R., Jarosińska D., Rokita B., Ulański P., and Rosiak J.; (2012) Determination of degree of deacetylation of chitosan - Comparision of methods. Progress on Chemistry and Application of Chitin and its Derivatives: p. 5–20.
  • Brugnerotto J., Lizardi J., Goycoolea F.M., Arguelles-Monal W., Desbrie Áres J., and Rinaudo M.; (2001) An infrared investigation in relation with chitin and chitosan characterization. Polymer 42: p. 3569–3580. DOI: 10.1016/S0032-3861(00)00713-8
  • Zelinska K., Shostenko A.G., and Truszkowski S.; (2009) Radiolysis of chitosan. High Energy Chemistry 43(6): p. 445-448. DOI: 10.1134/S0018143909060058

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e63570e9-3797-4b5c-a716-6dd3c875db3d
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.