PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 57 | 70-80
Article title

Classes of relativistic stars with quadratic equation of state

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we found new exact solutions to the Einstein-Maxwell system of equations with charged anisotropic matter distribution considering quadratic equation of state. We specify the gravitational potential Z(x) that depends of a adjustable parameter n and that allow integrate analytical the field equations in order to calculate the energy density, the radial pressure, the anisotropy, charge density and the mass function for different values of n. The obtained solutions can be written in terms of elementary and polynomial functions
Discipline
Year
Volume
57
Pages
70-80
Physical description
Contributors
  • Department of Basic Sciences, Maritime University of the Caribbean, Catia la Mar, Venezuela, mmf.umc@gmail.com
References
  • [1] Kuhfitting, P. K. (2011). Some remarks on exact wormhole solutions, Adv. Stud. Theor. Phys., 5, 365- 367.
  • [2] Bicak, J. (2006). Einstein equations: exact solutions, Encyclopedia of Mathematical Physics., 2, 165-173.
  • [3] Malaver, M. (2013). Black Holes, Wormholes and Dark Energy Stars in General Relativity. Lambert Academic Publishing, Berlin. ISBN: 978-3-659-34784-9.
  • [4] Komathiraj K., and Maharaj S.D. (2008). Classes of exact Einstein-Maxwell solutions, Gen. Rel. Grav. 39, 2079-2093.
  • [5] Sharma, R., Mukherjee, S and Maharaj, S.D. (2001). General solution for a class of static charged stars, Gen. Rel. Grav. 33, 999-110.
  • [6] Schwarzschild, K. (1916). Über das Gravitationsfeld einer Kugel aus inkompressibler Flüssigkeit, Math. Phys. Tech, 424-434.
  • [7] Tolman, R. C. (1939). Static Solutions of Einstein's Field Equations for Spheres of Fluid, Phys. Rev. 55, 364-373.
  • [8] Oppenheimer, J. R. and Volkoff, G. (1939). On massive neutron cores, Phys. Rev. 55, 374-381.
  • [9] Chandrasekhar, S. (1931). Mass of Ideal White Dwarfs, Astrophys. J., 74, 81-82.
  • [10] Baade, W., and Zwicky, F. (1934). Cosmic Rays from Super-Novae, Proc. Nat. Acad. Sci. U.S., 20, 259-263.
  • [11] Komathiraj, K., and Maharaj, S. D. (2007). Analytical models for quark stars, Int. J. Mod. Phys. D16, pp. 1803-1811.
  • [12] Bowers, R. L., Liang, E. P. T. Astrophys. J. 188, 657 (1974).
  • [13] Cosenza, M., Herrera, L., Esculpi, M. and Witten, L. (1981). J. Math. Phys. 22 (1), 118.
  • [14] Gokhroo, M. K., and Mehra. A. L. (1994). Anisotropic spheres with variable energy density in general relativity. Gen. Relat. Grav. 26 (1), 75-84.
  • [15] Sokolov. A. I. (1980), Sov. Phys. JETP., 52, 575.
  • [16] Usov, V. V. Phys. Rev. D, 70, 0673
  • [17] Malaver, M. (2009). Análisis comparativo de algunos modelos analíticos para estrellas de quarks, Revista Integración, 27, 125-133.
  • [18] Malaver, M. (2014). Some news models for strange quark stars with isotropic pressure, AASCIT Communications, 1, 48-51.
  • [19] Thirukkanesh, S., and Maharaj, S. D. (2008). Charged anisotropic matter with linear equation of state, Class. Quantum Gravity., 25, 235001.
  • [20] Maharaj, S. D., Sunzu, J. M. and Ray, S. (2014). Eur. Phys. J. Plus., 129, 3.
  • [21] Thirukkanesh, S., and Ragel, F. C. (2013). A class of exact strange quark star model, PRAMANA-Journal of physics., 81(2), 275-286.
  • [22] Sunzu, J. M, Maharaj, S. D and Ray, S. (2014). Astrophysics. Space. Sci., 354, 517-524.
  • [23] Feroze T. and Siddiqui A. (2011). Charged anisotropic matter with quadratic equation of state, Gen. Rel. Grav., 43, 1025-1035.
  • [24] Feroze, T,. and Siddiqui, A. (2014). Some exact solutions of the Einstein-Maxwell equations with a quadratic equation of state, Journal of the Korean Physical Society., 65(6), 944-947.
  • [25] Malaver, M. (2014). Strange Quark Star Model with Quadratic Equation of State, Frontiers of Mathematics and Its Applications., 1(1), 9-15.
  • [26] Malaver, M. (2015). Relativistic Modeling of Quark Stars with Tolman IV Type Potential, International Journal of Modern Physics and Application., 2(1), 1-6.
  • [27] Takisa, P. M., and Maharaj, S. D. (2013). Some charged polytropic models, Gen. Rel. Grav., 45, 1951-1969.
  • [28] Thirukkanesh S. and Ragel F. C. (2012). Exact anisotropic sphere with polytropic equation of state, PRAMANA - Journal of physics, 78(5), 687-696.
  • [29] Malaver, M. (2013). Regular model for a quark star with Van der Waals modified equation of state, World Applied Programming, 3, 309-313.
  • [30] Malaver, M. (2013). Analytical model for charged polytropic stars with Van der Waals Modified Equation of State, American Journal of Astronomy and Astrophysics., 1(4), 41-46.
  • [31] Raghoonundun, A. and Hobill, D. (2015). Possible physical realizations of the Tolman VII solution, Physical Review D 92, 124005.
  • [32] Durgapal, M. C. and Bannerji, R. (1983). New analytical stellar model in general relativity, Phys. Rev., D27, 328-331.
  • [33] Bibi, R., Feroze, T. and Siddiqui, A. (2016). Solution of the Einstein-Maxwell equations with anisotropic negative pressure as a potential model of a dark energy star, Canadian Journal of Physics, 94(8), 758-762.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e5c97e74-24f0-4786-aa95-21542e8703b1
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.