Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 11 | 4 | 244-250

Article title

Korelacja obrazu MRI z neuropatologią i kliniką w stwardnieniu rozsianym

Content

Title variants

EN
Correlation between MRI, neuropathology and clinics in multiple sclerosis

Languages of publication

PL

Abstracts

PL
Badanie ośrodkowego układu nerwowego (OUN) techniką rezonansu magnetycznego (magnetic resonance imaging, MRI) jest obecnie najważniejszym badaniem dodatkowym w diagnostyce i monitorowaniu stwardnienia rozsianego (SM). W ostatnich latach pojawiło się duże zainteresowanie możliwościami poszukiwania korelacji między obrazem uzyskanym w MRI a kliniką i neuropatologią podczas rozwoju SM. Badacze poszukują korelacji między obrazem MRI a zapaleniem, demielinizacją, neurodegeneracją oraz gliozą w OUN. Obecnie uważa się, że hipointensywne zmiany w obrazach T1-zależnych najlepiej korelują z rozwojem demielinizacji i neurodegeneracją. Ponadto liczne badania potwierdzają, że objętość ognisk widzianych w sekwencji T1 może korelować z nasileniem niesprawności u pacjentów z SM. Obrazy T1-zależne wzmocnione gadoliną ujawniają miejsca w OUN, w których nastąpiło uszkodzenie bariery krew-mózg i świadczą o aktywnym procesie zapalnym. Olbrzymia większość ognisk patologicznych w OUN w przebiegu SM jest hiperintensywna w sekwencji T2. Nie jest to jednak obraz typowy dla jakiegokolwiek procesu patologicznego. Istnieją badania sugerujące, że liczba ognisk w sekwencji T2 u chorych z CIS (clinically isolated syndrome) koreluje z prawdopodobieństwem rozwoju SM w przyszłości. Przedstawione wyniki wskazują, że przy pomocy MRI wciąż nie uzyskujemy odpowiedzi na wiele pytań dotyczących przyżyciowej oceny zmian patologicznych zachodzących w OUN podczas SM, niemniej jednak dostępne dane sugerują, że możemy to już robić z pewnym przybliżeniem.
EN
Magnetic resonance imaging (MRI) of the central nervous system (CNS) is currently the most important imaging tool for diagnosis and monitoring of multiple sclerosis (MS). Recently several studies were published looking for the correlation between neuroimaging, clinics and pathology in the CNS during MS. These efforts are focused on seeking correlation between changes in MRI scans and inflammation, demyelination, neurodegeneration and gliosis in CNS. T1-weighted hypointensive lesions in MS correlate mostly with demyelination and neuronal loss. Moreover many trials indicate that the volume of T1-hypointense lesions correlate well with clinical disability in MS patients. Gadolinium enhancement in T1-weighted images reflects blood-brain barrier (BBB) breakdown and histologically correlates with the inflammatory phase of lesion development. Most MS lesions are hyperintense on T2-weighted MRI scans. The appearance of MRI changes in MS is not typical for any kind of tissue destruction. There are some trials suggesting that in clinically isolated syndromes (CIS) the number of cerebral T2-lesions is predictive for the development of definite MS in thefuture. All of data presented above indicate that there are still many problems with correlating CNS neuroimaging data from MS patients with their clinical status as well as with CNS histopathology. However, there is some progress in that field lately because of development of the new MRI techniques.

Discipline

Year

Volume

11

Issue

4

Pages

244-250

Physical description

Contributors

  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym Uniwersytetu Medycznego w Łodzi
  • Oddział Kliniczny Propedeutyki Neurologicznej z Pododdziałem Udarowym Uniwersytetu Medycznego w Łodzi

References

  • 1. Fazekas F., Barkhof F., Filippi M. i wsp.: The contribution of magnetic resonance imaging to the diagnosis of multiple sclerosis. Neurology 1999; 53: 448-456.
  • 2. Miller D.H.: Guidelines for MRI monitoring of the treatment of multiple sclerosis: recommendations of the US Multiple Sclerosis Society’s task force. Mult. Scler. 1996; 1: 335-338.
  • 3. Erickson B.J., Noseworthy J.H.: Value of magnetic resonance imaging in assessing efficacy in clinical trials of multiple sclerosis therapies. Mayo Clin. Proc. 1997; 72: 1080-1089.
  • 4. Thompson A.J., Miller D., Youl B. i wsp.: Serial gadoliniumenhanced MRI in relapsing/remitting multiple sclerosis of varying disease duration. Neurology 1992; 42: 60-63.
  • 5. Thompson A.J., Kermode A.G., MacManus D.G. i wsp.: Patterns of disease activity in multiple sclerosis: clinical and magnetic resonance imaging study. BMJ 1990; 300: 631-634.
  • 6. Kappos L., Moeri D., Radue E.W. i wsp.: Predictive value of gadolinium-enhanced magnetic resonance imaging for relapse rate and changes in disability or impairment in multiple sclerosis: a meta-analysis. Gadolinium MRI Metaanalysis Group. Lancet 1999; 353: 964-969.
  • 7. Ormerod I.E., Miller D.H., McDonald W.I. i wsp.: The role of NMR imaging in the assessment of multiple sclerosis and isolated neurological lesions. A quantitative study. Brain 1987; 110: 1579-1616.
  • 8. Bo L., Vedeler C.A., Nyland H. i wsp.: Intracortical multiple sclerosis lesions are not associated with increased lymphocyte infiltration. Mult. Scler. 2003; 9: 323-331.
  • 9. Zhao G.J., Koopmans R.A., Li D.K. i wsp.: Effect of interferon beta-1b in MS. Assessment of annual accumulation of PD/T2 activity on MRI. UBC MS/MRI Analysis Group and the MS Study Group. Neurology 2000; 54: 200-206.
  • 10. Bot J.C., Barkhof F., Polman C.H. i wsp.: Spinal cord abnormalities in recently diagnosed MS patients: added value of spinal MRI examination. Neurology 2004; 62: 226-233.
  • 11. Nijeholt G.J., van Walderveen M.A., Castelijns J.A. i wsp.: Brain and spinal cord abnormalities in multiple sclerosis. Correlation between MRI parameters, clinical subtypes and symptoms. Brain 1998; 121: 687-697.
  • 12. O’Riordan J.I., Losseff N.A., Phatouros C. i wsp.: Asymptomatic spinal cord lesions in clinically isolated optic nerve, brain stem, and spinal cord syndromes suggestive of demyelination. J. Neurol. Neurosurg. Psychiatry 1998; 64: 353-357.
  • 13. Polman C.H., Reingold S.C., Edan G. i wsp.: Diagnostic criteria for multiple sclerosis: 2005 revisions to the „McDonald Criteria”. Ann. Neurol. 2005; 58: 840-846.
  • 14. Thorpe J.W., Kidd D., Moseley I.F. i wsp.: Serial gadoliniumenhanced MRI of the brain and spinal cord in early relapsingremitting multiple sclerosis. Neurology 1996; 46: 373-378.
  • 15. Kidd D., Thorpe J.W., Kendall B.E. i wsp.: MRI dynamics of brain and spinal cord in progressive multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1996; 60: 15-19.
  • 16. Gass A., Filippi M., Rodegher M.E. i wsp.: Characteristics of chronic MS lesions in the cerebrum, brainstem, spinal cord, and optic nerve on T1-weighted MRI. Neurology 1998; 50: 548-550.
  • 17. Stevenson V.L., Leary S.M., Losseff N.A. i wsp.: Spinal cord atrophy and disability in MS: a longitudinal study. Neurology 1998; 51: 234-238.
  • 18. Brinar V.V., Habek M., Zadro I. i wsp.: Current concepts in the diagnosis of transverse myelopathies. Clin. Neurol. Neurosurg. 2008; 110: 919-927.
  • 19. Brinar V.V., Habek M., Brinar M. i wsp.: The differential diagnosis of acute transverse myelitis. Clin. Neurol. Neurosurg. 2006; 108: 278-283.
  • 20. Sahraian M.A., Moinfar Z., Khorramnia S., Ebrahim M.M.: Relapsing neuromyelitis optica: demographic and clinical features in Iranian patients. Eur. J. Neurol. 2010; 17: 794-799.
  • 21. Lassmann H., Raine C.S., Antel J., Prineas J.W.: Immunopathology of multiple sclerosis: report on an international meeting held at the Institute of Neurology of the University of Vienna. J. Neuroimmunol. 1998; 86: 213-217.
  • 22. Gold R., Hartung H.P., Toyka K.V.: Animal models for autoimmune demyelinating disorders of the nervous system. Mol. Med. Today 2000; 6: 88-91.
  • 23. Lucchinetti C., Bruck W., Parisi J. i wsp.: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann. Neurol. 2000; 47: 707-717.
  • 24. Nesbit G.M., Forbes G.S., Scheithauer B.W. i wsp.: Multiple sclerosis: histopathologic and MR and/or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology 1991; 180: 467-474.
  • 25. Estes M.L., Rudick R.A., Barnett G.H., Ransohoff R.M.: Stereotactic biopsy of an active multiple sclerosis lesion. Immunocytochemical analysis and neuropathologic correlation with magnetic resonance imaging. Arch. Neurol. 1990; 47: 1299-1303.
  • 26. Newcombe J., Hawkins C.P., Henderson C.L. i wsp.: Histopathology of multiple sclerosis lesions detected by magnetic resonance imaging in unfixed postmortem central nervous system tissue. Brain 1991; 114: 1013-1023.
  • 27. Miller D.H., Rudge P., Johnson G. i wsp.: Serial gadolinium enhanced magnetic resonance imaging in multiple sclerosis. Brain 1988; 111: 927-939.
  • 28. He J., Grossman R.I., Ge Y., Mannon L.J.: Enhancing patterns in multiple sclerosis: evolution and persistence. AJNR Am. J. Neuroradiol. 2001; 22: 664-669.
  • 29. Filippi M., Rovaris M., Rocca M.A. i wsp.: Glatiramer acetate reduces the proportion of new MS lesions evolving into „black holes”. Neurology 2001; 57: 731-733.
  • 30. Bagnato F., Jeffries N., Richert N.D. i wsp.: Evolution of T1 black holes in patients with multiple sclerosis imaged monthly for 4 years. Brain 2003; 126: 1782-1789.
  • 31. van Waesberghe J.H., van Walderveen M.A., Castelijns J.A. i wsp.: Patterns of lesion development in multiple sclerosis: longitudinal observations with T1-weighted spin-echo and magnetization transfer MR. AJNR Am. J. Neuroradiol. 1998; 19: 675-683.
  • 32. Ciccarelli O., Giugni E., Paolillo A. i wsp.: Magnetic resonance outcome of new enhancing lesions in patients with relapsing-remitting multiple sclerosis. Eur. J. Neurol. 1999; 6: 455-459.
  • 33. Masdeu J.C., Moreira J., Trasi S. i wsp.: The open ring. A new imaging sign in demyelinating disease. J. Neuroimaging 1996; 6: 104-107.
  • 34. Neema M., Stankiewicz J., Arora A. i wsp.: MRI in multiple sclerosis: what‘s inside the toolbox? Neurotherapeutics 2007; 4: 602-617.
  • 35. Simon J.H., Li D., Traboulsee A. i wsp.: Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines. AJNR Am. J. Neuroradiol. 2006; 27: 455-461.
  • 36. Bitsch A., Kuhlmann T., Stadelmann C. i wsp.: A longitudinal MRI study of histopathologically defined hypointense multiple sclerosis lesions. Ann. Neurol. 2001; 49: 793-796.
  • 37. Bermel R.A., Bakshi R.: The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 2006; 5: 158-170.
  • 38. Kalkers N.F., Ameziane N., Bot J.C. i wsp.: Longitudinal brain volume measurement in multiple sclerosis: rate of brain atrophy is independent of the disease subtype. Arch. Neurol. 2002; 59: 1572-1576.
  • 39. Ge Y., Grossman R.I., Udupa J.K. i wsp.: Brain atrophy in relapsing-remitting multiple sclerosis and secondary progressive multiple sclerosis: longitudinal quantitative analysis. Radiology 2000; 214: 665-670.
  • 40. Neema M., Stankiewicz J., Arora A. i wsp.: T1- and T2-based MRI measures of diffuse gray matter and white matter damage in patients with multiple sclerosis. J. Neuroimaging 2007; 17 supl. 1: 16S-21S.
  • 41. Rudick R.A.: Impact of disease-modifying therapies on brain and spinal cord atrophy in multiple sclerosis. J. Neuroimaging 2004; 14: 54S-64S.
  • 42. Simon J.H., Lull J., Jacobs L.D. i wsp.: A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1a. Multiple Sclerosis Collaborative Research Group. Neurology 2000; 55: 185-192.
  • 43. Morrissey S.P., Stodal H., Zettl U. i wsp.: In vivo MRI and its histological correlates in acute adoptive transfer experimental allergic encephalomyelitis. Quantification of inflammation and oedema. Brain 1996; 119: 239-248.
  • 44. Larsson H.B., Frederiksen J., Kjaer L. i wsp.: In vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis. Magn. Reson. Med. 1988; 7: 43-55.
  • 45. Bruck W., Bitsch A., Kolenda H. i wsp.: Inflammatory central nervous system demyelination: correlation of magnetic resonance imaging findings with lesion pathology. Ann. Neurol. 1997; 42: 783-793
  • 46. Powell T., Sussman J.G., Davies-Jones G.A.: MR imaging in acute multiple sclerosis: ringlike appearance in plaques suggesting the presence of paramagnetic free radicals. AJNR Am. J. Neuroradiol. 1992; 13: 1544-1546.
  • 47. Bruck W., Sommermeier N., Bergmann M. i wsp.: Macrophages in multiple sclerosis. Immunobiology 1996; 195: 588-600.
  • 48. Willoughby E.W., Grochowski E., Li D.K. i wsp.: Serial magnetic resonance scanning in multiple sclerosis: a second prospective study in relapsing patients. Ann. Neurol. 1989; 25: 43-49.
  • 49. Koopmans R.A., Li D.K., Oger J.J. i wsp.: The lesion of multiple sclerosis: imaging of acute and chronic stages. Neurology 1989; 39: 959-963.
  • 50. Hajnal J.V., De Coene B., Lewis P.D. i wsp.: High signal regions in normal white matter shown by heavily T2-weighted CSF nulled IR sequences. J. Comput. Assist. Tomogr. 1992; 16: 506-513.
  • 51. Hawkins C.P., Munro P.M., MacKenzie F. i wsp.: Duration and selectivity of blood-brain barrier breakdown in chronic relapsing experimental allergic encephalomyelitis studied by gadolinium- DTPA and protein markers. Brain 1990; 113: 365-378.
  • 52. Seeldrayers P.A., Syha J., Morrissey S.P. i wsp.: Magnetic resonance imaging investigation of blood-brain barrier damage in adoptive transfer experimental autoimmune encephalomyelitis. J. Neuroimmunol. 1993; 46: 199-206.
  • 53. Namer I.J., Steibel J., Piddlesden S.J. i wsp.: Magnetic resonance imaging of antibody-mediated demyelinating experimental allergic encephalomyelitis. J. Neuroimmunol. 1994; 54: 41-50.
  • 54. Karlik S.J., Munoz D., St Louis J., Strejan G.: Correlation between MRI and clinico-pathological manifestations in Lewis rats protected from experimental allergic encephalomyelitis by acylated synthetic peptide of myelin basic protein. Magn. Reson. Imaging 1999; 17: 731-737.
  • 55. Barnes D., Munro P.M., Youl B.D. i wsp.: The longstanding MS lesion. A quantitative MRI and electron microscopic study. Brain 1991; 114: 1271-1280.
  • 56. Kwon E.E., Prineas J.W.: Blood-brain barrier abnormalities in longstanding multiple sclerosis lesions. An immunohistochemical study. J. Neuropathol. Exp. Neurol. 1994; 53: 625-636.
  • 57. Trapp B.D., Peterson J., Ransohoff R.M. i wsp.: Axonal transection in the lesions of multiple sclerosis. N. Engl. J. Med. 1998; 338: 278-285.
  • 58. Matthews P.M., Pioro E., Narayanan S. i wsp.: Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 1996; 119: 715-722.
  • 59. Lucchinetti C.F., Bruck W., Rodriguez M., Lassmann H.: Distinct patterns of multiple sclerosis pathology indicates heterogeneity on pathogenesis. Brain Pathol. 1996; 6: 259-274.
  • 60. Davie C.A., Barker G.J., Thompson A.J. i wsp.: 1H magnetic resonance spectroscopy of chronic cerebral white matter lesions and normal appearing white matter in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry 1997; 63: 736-742.
  • 61. Rovira A., Alonso J., Cucurella G. i wsp.: Evolution of multiple sclerosis lesions on serial contrast-enhanced T1-weighted and magnetization-transfer MR images. AJNR Am. J. Neuroradiol. 1999; 20: 1939-1945.
  • 62. van Walderveen M.A., Kamphorst W., Scheltens P. i wsp.: Histopathologic correlate of hypointense lesions on T1-weighted spin-echo MRI in multiple sclerosis. Neurology 1998; 50: 1282-1288.
  • 63. Li G.L., Farooque M., Holtz A., Olsson Y.: Changes of betaamyloid precursor protein after compression trauma to the spinal cord: an experimental study in the rat using immunohistochemistry. J. Neurotrauma 1995; 12: 269-277.
  • 64. Pierce J.E., Trojanowski J.Q., Graham D.I. i wsp.: Immunohistochemical characterization of alterations in the distribution of amyloid precursor proteins and beta-amyloid peptide after experimental brain injury in the rat. J. Neurosci. 1996; 16: 1083-1090.
  • 65. Bramlett H.M., Kraydieh S., Green E.J., Dietrich W.D.: Temporal and regional patterns of axonal damage following traumatic brain injury: a beta-amyloid precursor protein immunocytochemical study in rats. J. Neuropathol. Exp. Neurol. 1997; 56: 1132-1141.
  • 66. Yam P.S., Takasago T., Dewar D. i wsp.: Amyloid precursor protein accumulates in white matter at the margin of a focal ischaemic lesion. Brain Res. 1997; 760: 150-157.
  • 67. Gentleman S.M., Roberts G.W., Gennarelli T.A. i wsp.: Axonal injury: a universal consequence of fatal closed head injury? Acta Neuropathol. 1995; 89: 537-543.
  • 68. Ferguson B., Matyszak M.K., Esiri M.M., Perry V.H.: Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120: 393-399.
  • 69. Rivera-Quinones C., McGavern D., Schmelzer J.D. i wsp.: Absence of neurological deficits following extensive demyelination in a class I-deficient murine model of multiple sclerosis. Nat. Med. 1998; 4: 187-193.
  • 70. Giovannoni G.: Cerebrospinal fluid and serum nitric oxide metabolites in patients with multiple sclerosis. Mult. Scler. 1998; 4: 27-30.
  • 71. Goodin D.S.: Magnetic resonance imaging as a surrogate outcome measure of disability in multiple sclerosis: have we been overly harsh in our assessment? Ann. Neurol. 2006; 59: 597-605.
  • 72. Filippi M., Rocca M.A.: Conventional MRI in multiple sclerosis. J. Neuroimaging 2007; 17 supl. 1: 3S-9S.
  • 73. Brex P.A., Ciccarelli O., O’Riordan J.I. i wsp.: A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N. Engl. J. Med. 2002; 346: 158-164.
  • 74. Morrissey S.P., Miller D.H., Kendall B.E. i wsp.: The significance of brain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. A 5-year follow-up study. Brain 1993; 116: 135-146.
  • 75. Truyen L., van Waesberghe J.H., van Walderveen M.A. i wsp.: Accumulation of hypointense lesions („black holes”) on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996; 47: 1469-1476.
  • 76. Losseff N.A., Webb S.L., O’Riordan J.I. i wsp.: Spinal cord atrophy and disability in multiple sclerosis. A new reproducible and sensitive MRI method with potential to monitor disease progression. Brain 1996; 119: 701-708.
  • 77. Simon J.H., Jacobs L.D., Campion M.K. i wsp.: A longitudinal study of brain atrophy in relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group (MSCRG). Neurology 1999; 53: 139-148.
  • 78. Gass A., Barker G.J., Kidd D. i wsp.: Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann. Neurol. 1994; 36: 62-67.
  • 79. Rovaris M., Filippi M., Falautano M. i wsp.: Relation between MR abnormalities and patterns of cognitive impairment in multiple sclerosis. Neurology 1998; 50: 1601-1608.
  • 80. Rovaris M., Filippi M.: Defining the response to multiple sclerosis treatment: the role of conventional magnetic resonance imaging. Neurol. Sci. 2005; 26 supl. 4: S204-S208.
  • 81. Sormani M.P., Bonzano L., Roccatagliata L. i wsp.: Magnetic resonance imaging as a potential surrogate for relapses in multiple sclerosis: a meta-analytic approach. Ann. Neurol. 2009; 65: 268-275.
  • 82. Filippi M., Rocca M.A., Arnold D.L. i wsp.: EFNS guidelines on the use of neuroimaging in the management of multiple sclerosis. Eur. J. Neurol. 2006; 13: 313-325.
  • 83. Lövblad K.O., Anzalone N., Dörfler A. i wsp.: MR imaging in multiple sclerosis: review and recommendations for current practice. AJNR Am. J. Neuroradiol. 2010; 31: 983-989.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e587b282-ec3d-41c2-833b-a90b172aa5c4
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.