Journal
Article title
Authors
Content
Title variants
Languages of publication
Abstracts
In this work, we introduce a new method in cryptography. It is using the Moore-Penrose generalized inverse of a rectangular matrix to the cryptographic system. We use a rectangular matrix which has the Moore-Penrose generalized inverse as a key. We mean, the rectangular matrix which has full row rank, or the rectangular matrix which has full column rank, or the rectangular matrix which has full factorization.
Discipline
Publisher
Journal
Year
Volume
Pages
1-14
Physical description
Contributors
author
- Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya
author
- Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya
References
- [1] J. Levine, R. E. Hartwig, Applications of the Drazin invers to the Hill Cryptographic System. Part I. Cryptologia 4(2) (1980) 71-85
- [2] J. Levine, R. E. Hartwig, Applications of the Drazin invers to the Hill Cryptographic System. Part II. Cryptologia 4(3) (1980) 150-168
- [3] R. E. Hartwig, J. Levine, Applications of the Drazin invers to the Hill Cryptographic System. Part III. Cryptologia 5(2) (1981) 67-77
- [4] R. E. Hartwig, J. Levine, Applications of the Drazin invers to the Hill Cryptographic System. Part IV. Cryptologia 5(4) (1981) 213-228
- [5] J. Levine, J. V. Brawley, Jr., Involutory commutants with some applications to algebraic cryptography. I. Journal für die reine und angewandte Mathematik 224 (1966) 20-43
- [6] J. Levine, J. V. Brawley, Jr., Involutory commutants with some applications to algebraic cryptography. II. Journal für die reine und angewandte Mathematik 227 (1967) 1-24
- [7] J. Levine, Varible matrix Substitution in Algebraic cryptography. Amer. Math. Monthly 65 (1958) 170-179
- [8] L. S. Hill, Cryptography in an algebraic alphabet. Amer. Math. Monthly 36 (1929) 306-312
- [9] J. Levine, Some elementary cryptanalysis of algebraic cryptography. Amer. Math. Monthly 68 (1961) 411-418
- [10] A. M. Kanan, A. A. Elbeleze, A. Abubaker, Applications the Moore-Penrose Generalized Inverse to linear systems of Algebraic Equations. American Journal of Applied Mathematics 7(6) (2019) 152-156
- [11] J. Z. Hearon, Generalized Inverses and solutions of linear systems. Journal of Research of the National Bureau of Standards-B. Mathematical Sciences 72B(4) (1968) 303-308
- [12] J. L. Bonilla, R. L. Vazquez, S. V. Beltran, Moore-Penrose`s inverse and solution of linear systems. World Scientific News 101 (2018) 246-252
- [13] G. B. Thapa1, P. L. Estrada, J. L. Bonilla, On the Moore-Penrose Generalized Inverse matrix. World Scientific News 95 (2018) 100-110
- [14] T. N. E. Greville, The Pseudoinverse of a rectangular singular matrix and its application to the solution of systems of linear equations. SIAM Rev. 1 (1960) 38-43
- [15] A. Saman, A. M., Solution of linearly-Dependent Equations by Generalized Inverse of Matrices. Int. J. Sci. Emerging Tech 4 (2012) 138-142
- [16] R. Penrose, A generalized inverse for matrices. Proc. Camb. Phil. Soc. 51 (1955) 406-413
- [17] A. B. Israel, Generalized Inverses of Matrices and Their Applications. Springer, (1980) 154-186
- [18] C. E. Langenhop, On Generalized Inverses of Matrices. SIAM J. Appl. Math. 15 (1967) 1239-1246
- [19] C. R. Rao, S. K. Matira, Generalized Inverses of a matrix and Its Applications. New York: Wiley (1971) 601-620.
- [20] H. Ozden, A Note On The Use of Generalized Inverse Of Matrices In Statistic. Istanbul Univ. Fen Fak. Mat. Der. 49 (1990) 39-43
- [21] R. E. Cline, T. N. E. Gerville, A Drazin Inverse For Rectangular Matrices. Linear Algebra and Its Appliations 29 (1980) 53-62
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e57cce4d-3e53-4bdb-87a2-a72f74c5a536