PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 148 | 1-14
Article title

Using the Moore-Penrose Generalized Inverse in Cryptography

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this work, we introduce a new method in cryptography. It is using the Moore-Penrose generalized inverse of a rectangular matrix to the cryptographic system. We use a rectangular matrix which has the Moore-Penrose generalized inverse as a key. We mean, the rectangular matrix which has full row rank, or the rectangular matrix which has full column rank, or the rectangular matrix which has full factorization.
Year
Volume
148
Pages
1-14
Physical description
Contributors
  • Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya
  • Department of Mathematics, Faculty of Science, Sabratha University, Sabratha, Libya
References
  • [1] J. Levine, R. E. Hartwig, Applications of the Drazin invers to the Hill Cryptographic System. Part I. Cryptologia 4(2) (1980) 71-85
  • [2] J. Levine, R. E. Hartwig, Applications of the Drazin invers to the Hill Cryptographic System. Part II. Cryptologia 4(3) (1980) 150-168
  • [3] R. E. Hartwig, J. Levine, Applications of the Drazin invers to the Hill Cryptographic System. Part III. Cryptologia 5(2) (1981) 67-77
  • [4] R. E. Hartwig, J. Levine, Applications of the Drazin invers to the Hill Cryptographic System. Part IV. Cryptologia 5(4) (1981) 213-228
  • [5] J. Levine, J. V. Brawley, Jr., Involutory commutants with some applications to algebraic cryptography. I. Journal für die reine und angewandte Mathematik 224 (1966) 20-43
  • [6] J. Levine, J. V. Brawley, Jr., Involutory commutants with some applications to algebraic cryptography. II. Journal für die reine und angewandte Mathematik 227 (1967) 1-24
  • [7] J. Levine, Varible matrix Substitution in Algebraic cryptography. Amer. Math. Monthly 65 (1958) 170-179
  • [8] L. S. Hill, Cryptography in an algebraic alphabet. Amer. Math. Monthly 36 (1929) 306-312
  • [9] J. Levine, Some elementary cryptanalysis of algebraic cryptography. Amer. Math. Monthly 68 (1961) 411-418
  • [10] A. M. Kanan, A. A. Elbeleze, A. Abubaker, Applications the Moore-Penrose Generalized Inverse to linear systems of Algebraic Equations. American Journal of Applied Mathematics 7(6) (2019) 152-156
  • [11] J. Z. Hearon, Generalized Inverses and solutions of linear systems. Journal of Research of the National Bureau of Standards-B. Mathematical Sciences 72B(4) (1968) 303-308
  • [12] J. L. Bonilla, R. L. Vazquez, S. V. Beltran, Moore-Penrose`s inverse and solution of linear systems. World Scientific News 101 (2018) 246-252
  • [13] G. B. Thapa1, P. L. Estrada, J. L. Bonilla, On the Moore-Penrose Generalized Inverse matrix. World Scientific News 95 (2018) 100-110
  • [14] T. N. E. Greville, The Pseudoinverse of a rectangular singular matrix and its application to the solution of systems of linear equations. SIAM Rev. 1 (1960) 38-43
  • [15] A. Saman, A. M., Solution of linearly-Dependent Equations by Generalized Inverse of Matrices. Int. J. Sci. Emerging Tech 4 (2012) 138-142
  • [16] R. Penrose, A generalized inverse for matrices. Proc. Camb. Phil. Soc. 51 (1955) 406-413
  • [17] A. B. Israel, Generalized Inverses of Matrices and Their Applications. Springer, (1980) 154-186
  • [18] C. E. Langenhop, On Generalized Inverses of Matrices. SIAM J. Appl. Math. 15 (1967) 1239-1246
  • [19] C. R. Rao, S. K. Matira, Generalized Inverses of a matrix and Its Applications. New York: Wiley (1971) 601-620.
  • [20] H. Ozden, A Note On The Use of Generalized Inverse Of Matrices In Statistic. Istanbul Univ. Fen Fak. Mat. Der. 49 (1990) 39-43
  • [21] R. E. Cline, T. N. E. Gerville, A Drazin Inverse For Rectangular Matrices. Linear Algebra and Its Appliations 29 (1980) 53-62
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e57cce4d-3e53-4bdb-87a2-a72f74c5a536
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.