PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 105 | 197-203
Article title

Continuity equations in curved spaces

Content
Title variants
Languages of publication
EN
Abstracts
EN
In any Riemannian 4-space, we deduce continuity equations which could be interpreted as conservation laws for the energy and momentum of the gravitational field, with special emphasis in general relativity.
Discipline
Year
Volume
105
Pages
197-203
Physical description
Contributors
  • Central Campus, Pulchowk, Lalitpur Institute of Engineering, Tribhuvan Univ., Kathmandu, Nepal
  • Depto. Física, ESFM, Edif. 9, Zacatenco, Instituto Politécnico Nacional, CDMX, Mexico
  • ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, Col. Lindavista 07738, CDMX, Mexico
References
  • [1] D. Lovelock, H. Rund, Tensors, differential forms and variational principles, Dover, New York (1989).
  • [2] A. Einstein, Die grundlage der allgemeinen relativitätstheorie, Ann. der Physik 49 (1916) 769-822.
  • [3] A. Trautman, Conservation laws in general relativity, in ‘Gravitation: an introduction to current research’, Ed. L. Witten, Wiley, New York (1962) Chap. 5.
  • [4] R. Adler, M. Bazin, M. Schiffer, Introduction to general relativity, McGraw-Hill, New York (1965).
  • [5] W. Davis, Conservation laws in Einstein’s general theory of relativity, in ‘Studies in numerical analysis’, Ed. B. K. P. Scaife, Academic Press, London (1974) 29-64.
  • [6] P. Dirac, General theory of relativity, John Wiley, New York (1975).
  • [7] S. Persides, Energy and momentum in general relativity, Gen. Rel. Grav. 10(7) (1979) 609-622.
  • [8] T. Palmer, Gravitational energy-momentum: The Einstein pseudotensor reexamined, Gen. Rel. Grav. 12(2) (1980) 149-154.
  • [9] L. D. Landau, E. M. Lifshitz, The classical theory of fields, Addison-Wesley, Cambridge (1955).
  • [10] J. L. Anderson, Principles of relativity physics, Academic Press, New York (1967).
  • [11] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco (1973).
  • [12] J. L. Synge, Relativity: the general theory, North-Holland, Amsterdam (1976) Chap. 6
  • [13] J. H. Caltenco, J. López-Bonilla, R. Peña, J. Rivera R., Landau-Lifshitz energy-momentum pseudotensor for metrics with spherical symmetry, Proc. Pakistan Acad. Sci. 42(4) (2005) 261-264.
  • [14] C. Möller, On the localization of the energy of a physical system in the general theory of relativity, Ann. Phys. 4 (1958) 347-371.
  • [15] B. Laurent, Note on Möller’s energy-momentum pseudotensor, Nuovo Cim. 11(5) (1959) 740-743.
  • [16] P. S. Florides, Applications of Möller theory on energy and its localization in general relativity, Proc. Camb. Phil. Soc. 58 (1962) 102-109.
  • [17] K. B. Shah, Energy of a charged particle in Möller’s tetrad theory, Proc. Camb. Phil. Soc. 63 (1967) 1157-1160.
  • [18] J. N. Goldberg, Conservation laws in general relativity, Phys. Rev. 111(2) (1958) 315-320.
  • [19] J. Stachel, A variational principle giving gravitational superpotentials, the affine connection, Riemann tensor, and Einstein field equations, Gen. Rel. Grav. 8(8) (1977) 705-715.
  • [20] A. Komar, Covariant conservation laws in general relativity, Phys. Rev. 113(3) (1959) 934-936.
  • [21] A. Trautman, Lectures on general relativity – Brandeis Summer, Prentice-Hall, New Jersey (1964).
  • [22] J. C. Du Plessis, Tensorial concomitants and conservation laws, Tensor 20 (1969) 347-360.
  • [23] M. K. Moss, A Komar superpotential expression for the Trautman conservation law generator of general relativity, Lett. Nuovo Cim. 5 (1972) 543-550.
  • [24] H. Rund, Variational problems involving combined tensor fields, Abhandl. Math. Sem. Univ. Hamburg 29 (1966) 243-262.
  • [25] H. Rund, D. Lovelock, Variational principles in the general theory of relativity, Jber. Deutsch. Math. Verein 74 (1972) 1-65.
  • [26] A. Schild, Lectures on general relativity, in ‘Relativity theory and astrophysics. I’ –Lectures in Applied Maths. 8, Ed. J. Ehlers, Am. Math. Soc. USA (1967) 1-104
  • [27] M. A. Sinaceur, Dedekind et le programme de Riemann, Rev. Hist. Sci. 43 (1990) 221-294.
  • [28] D. Laugwitz, Bernhard Riemann 1826-1866. Turning points in the conception of mathematics, Birkhäuser, Boston, USA (2008).
  • [29] E. Noether, Invariante variationsprobleme, Nachr. Ges. Wiss. Göttingen 2 (1918) 235-257.
  • [30] H. Weyl, Emmy Noether, Scripta Math. 3 (1935) 201-220.
  • [31] H. Rund, The Hamilton-Jacobi theory in the calculus of variations. Its role in mathematics and physics, D. Van Nostrand, London (1966).
  • [32] A. Trautman, Noether equations and conservation laws, Commun. Math. Phys. 6(4) (1967) 248-261.
  • [33] C. H. Kimberling, Emmy Noether, Am. Math. Mon. 79(2) (1972) 136-149.
  • [34] N. Byers, Emmy Noether’s discovery of the deep connection between symmetries and conservation laws, Proc. Symp. Heritage E. Noether, Bar Ilan University, Tel Aviv, Israel, Dec. 2-3, 1996
  • [35] N. Byers, The life and times of Emmy Noether. Contributions of E. Noether to particle physics, in ‘History of original ideas and basic discoveries in particle physics’, Eds. H. B. Newman, T. Ypsilantis, Plenum Press, New York (1996) 945-964
  • [36] D. E. Neuenschwander, Emmy Noether’s wonderful theorem, The Johns Hopkins University Press, Baltimore (2011).
  • [37] Y. Kosman-Schwarzbach, The Noether theorems, Springer, New York (2011).
  • [38] P. Lam E., J. López-Bonilla, R. López-Vázquez, G. Ovando, Lagrangians: symmetries, gauge identities and first integrals, The SciTech, J. Sci. & Tech. 3(1) (2014) 54-66.
  • [39] C. Lanczos, Variational principles, in ‘Mathematical methods in solid state physics and superfluid theory’, Eds. R. C. Clark, G. H. Derrick, Oliver & Boyd, Edinburgh (1969) 1-45.
  • [40] C. Lanczos, The variational principles of mechanics, Univ. Toronto Press (1970) Chap. 11.
  • [41] C. Lanczos, Emmy Noether and calculus of variations, Bull. Inst. Math. and Appl. 9(8) (1973) 253-258.
  • [42] P. Lam E., J. López-Bonilla, R. López-Vázquez, Lanczos approach to Noether’s theorem, Bull. of Soc. for Mathematical Services & Standards 3(3) (2014) 1-4.
  • [43] J. L. Synge, A new pseudotensor with vanishing divergence, Nature 215 (1967) 102.
  • [44] D. Bak, D. Cangemi, R. Jackiw, Energy-momentum conservation in gravity theories, Phys. Rev. D49 (1994) 5173-5181.
  • [45] C. C. Chang, J. Nester, C. M. Chen, C.M., Pseudotensors and quasilocal energy-momentum, Phys. Rev. Lett. 83(10) (1999) 1897-1900.
  • [46] S. V. Babak, L. Grishchuk, The energy-momentum tensor for the gravitational field, Phys. Rev. D61 (2000) 24-38.
  • [47] J. H. Caltenco, J. López-Bonilla, G. Ovando, On a gravitational energy-momentum pseudotensor, J. Vect. Rel. 5(4) (2010) L8-L9.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e4eebf24-6260-4728-88ce-2f89d28cff65
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.