PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 10 | 140-159
Article title

Średni ciężar atomowy i gęstość ziaren chondrytu Jezersko (H4)

Authors
Content
Title variants
EN
Mean atomic weight and grain density of Jezersko H4 chondrite
Languages of publication
PL
Abstracts
EN
Mean atomic weight Amean of Jezersko (H4 S2(3) W2, find in 1992 in Slovenia) ordinary chondrite has been calculated using literature data on chemical composition of the meteorite (Miler et al. 2014) and using relationship between mean atomic weight and Fe/Si atomic ratio (Szurgot 2015c, d, e). It was shown that Jezersko’s Amean = 24.68, for composition without water. This value is close to the mean atomic weight of H chondrite finds (Amean = 24.80), and is somewhat smaller than Amean values for H4 chondrite falls (Amean = 25.09), and for H chondrite falls (Amean = 25.05) (Szurgot 2015e). Jezersko’s Fe/Si atomic ratio (0.742) leads to Amean = 24.66±0.24, which is close to the value determined by bulk composition. Jezersko’s Fe/Si atomic ratio is close to the value for H’s mean Fe/Si ratio: 0.762 for finds, and 0.807 for falls (Szurgot 2016a). This confirms that Jezersko belongs to H chondrites, as previously classified (Miler et al. 2014). Mean atomic number Zmean, and Amean/Zmean ratio of the meteorite have been also calculated. Jezersko’s Zmean = 12.16, and Amean/Zmean ratio is: 2.029 for composition without water. Jezersko’s silicates shown the values: Amean = 21.77, Zmean = 10.78, Amean/Z mean = 2.019, Fe/Si = 0.272, Amean(Fe/Si) = 21.84±0.06, and Jezersko’s Fe,Ni metal values: Amean = 56.12, Zmean = 26.19, and Amean/Z mean = 2.143. Two dependences: i) grain density dgr on Amean (Szurgot 2015a), and ii) grain density dgrain on Fe/Si atomic ratio (Szurgot 2017g), were used to predict grain density of Jezersko chondrite. It was established that dgr(Amean) leads to the values: 3.65±0.07 g/cm3 for Jezersko chondrite, 3.27±0.07 g/cm3 for silicates, and 7.83±0.07 g/cm3 for Fe,Ni metal of Jezersko meteorite. Dependence dgr(Fe/Si) predicts somewhat higher value grain density for Jezersko chondrite: 3.68±0.07 g/cm3, and 3.32±0.07 g/cm3 for silicates. All the predictions lead to the mean value of grain density for its weathering W2 degree: 3.67±0.03 g/cm3 for the whole rock of meteorite, and 3.29±0.03 g/cm3 for the silicates. It was established that due to terrestrial weathering, resulting in W2 weathering stage, Amean value of Jezersko chondrite is about 0.45 lower, Fe/Si atomic ratio is about 0.075 lower, and dgrain is about 0.06 g/cm3 lower than values for unweathered (W0) meteorite. Predicted porosity for Jezersko chondrite is: 10,1±0,7% for W2, and 11,5±0,5% for W0.
Discipline
Publisher

Year
Volume
10
Pages
140-159
Physical description
Contributors
  • Centrum Nauczania Matematyki i Fizyki Politechniki Łódzkiej, Al. Politechniki 11, 90-924 Łódź, maszurgot@gmail.com
References
  • Anderson D.L., 1989, Theory of the Earth, Blackwell Scientific Publications, London.
  • Anderson D.L., Kovach R.L., 1967, The composition of the terrestrial planets, Earth and Planetary Science Letters, 3, s. 19–24.
  • Anderson D.L., Jordan T., 1970, The composition of lower mantle, Physics of the Earth and Planetary Interiors, 3, s. 23–35.
  • Bartoschewitz R., Appel P., Barrat J.-A., Bischoff A., Caffee M.W., Franchi, I.A. Gabelica Z., Greenwood R.C., Harir M., Harries D., Hochleitner R., Hopp J., Laubenstein M., Mader B., Marques R., Morlok A., Nolze G., Prudęncio M.I., Rochette P., Ruf A., Schmitt-Kopplin P., Seemann E., Szurgot M., Tagle R., Wach R.A., Welten K.C., Weyrauch M., Wimmer K. (The Braunschweig Meteorite Consortium), 2017, The Braunschweig meteorite – a recent L6 chondrite fall in Germany, Chemie der Erde/Geochemistry, 77, s. 207–224.
  • Beech M., Coulson I.M., Nie W., McCausland P., 2009, The thermal and physical characteristics of the Gao-Guenie (H5) meteorite, Planetary and Space Science, 57, s. 764–770.
  • Berlin J., 2009, Mineralogy and bulk chemistry of chondrules and matrix in petrologic type 3 chondrules and matrix in petrologic type 3 chondrites: implications for early Solar System processes, PhD Thesis, Univ. New Mexico, Albuquerque.
  • Birch F., 1961, Composition of the Earth’s Mantle, Geophysical Journal International, 4, s. 295–311.
  • Britt D.T., Consolmagno G.J., 2003, Stony meteorite porosities and densities: a review of the data through 2001, Meteoritics & Planetary Science, 38, s. 1161–1180.
  • Consolmagno G.J., Macke R.J., Rochette P., Britt D.T., Gattacceca J., 2006, Density, magnetic susceptibility, and the characterization of ordinary chondrite falls and showers, Meteoritics & Planetary Science, 41, s. 331–342.
  • Consolmagno G.J., Britt D.T., Macke R.J., 2008, The significance of meteorite density and porosity, Chemie der Erde – Geochemistry, 68, s. 1–29.
  • Flynn G.J., Consolmagno G.J., Britt D. T., Brown P., Macke R.J., 2018, Physical properties of the stone meteorites: Implications for the properties of their parent bodies, Chemie der Erde, 78, s. 269–298.
  • Grossman J., Rubin A., 2006, White paper report for the Nomenclature Committee on the composition of olivine and pyroxene in equilibrated ordinary chondrites, http://www.lpi.usra.edu/meteor/docs/whitepaper.pdf.
  • Hutchison R., 2004, Meteorites – A petrologic, chemical and isotopic synthesis, Cambridge University Press, Cambridge.
  • Jakubowska M., Rzepecka P., Duda P., Woźniak M., Gałązka-Friedman J., 2017, Badania mössbauerowskie chondrytów zwyczajnych typu H potwierdzają stopień ich zwietrzenia określony za pomocą skali W, Acta Societatis Metheoriticae Polonorum, 8, s. 63–72.
  • Jarosewich E., 1990, Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses, Meteoritics, 25, s. 323–337.
  • Keil K., Zucolotto M.E., Krot A.N., Doyle P.M., Telus M., Krot T.V., Greenwood R.C., Franchi I.A., Wasson J.T., Welten K.C., Caffe M.W., Sears D.W.G., Riebe M., Wieler R., dos Santos E., Scorzelli R.B., Gattacceca J., Lagroix F., Laubenstein M., Mendes J. C., Schmitt-Kopplin P., Harir M., Moutinho A.L.R., 2015, The Vicęncia meteorite fall: A new unshocked (S1) weakly metamorphosed (3.2) LL chondrite, Meteoritics & Planetary Science, 50, s. 1089–1111.
  • Kiefer W.S., Macke R.J., Britt D.T., Irving A.J., Consolmagno G.J., 2012, The density and porosity of lunar rocks, Geophysical Research Letters, 39, L07201.
  • Kohout T., Kletetschka G., Elbre T., Adachi T., Mikula V., Pesonen L.J., Schnabl P., Slechta S., 2008, Physical properties of meteorites – applications in space missions to asteroids, Meteoritics & Planetary Science, 43, s. 1009–1020.
  • Macke R.J., 2010, Survey of meteorite physical properties: density, porosity and magnetic susceptibility, Ph.D. Thesis, University of Central Florida, Orlando.
  • Macke R.J., Consolmagno G.J., Britt D.T., Hutson M.L., 2010, Enstatite chondrite density, magnetic susceptibility, and porosity, Meteoritics & Planetary Science, 45, s. 1513–1526.
  • Macke R.J., Britt D.T., Consolmagno G.J., 2011, Density, porosity, and magnetic susceptibility of achondritic meteorites, Meteoritics & Planetary Science, 46, s. 311–326.
  • Maj S., 1998, Phonon thermal conductivity of geomaterials: Relationship to the density and mean atomic weight, Acta Geophysica Polonica, 46, s. 415–425.
  • Meteoritical Bulletin Database, 2018, https://www.lpi.usra.edu/meteor/.
  • Miler M., Ambrožič B., Mitrič B., Gosar M., Šturm S., Dolenec M., Jeršek M., 2014, Mineral and chemical composition of the Jezersko meteorite – a new chondrite from Slovenia, Meteoritics & Planetary Science, 49, s. 1875–1887.
  • Opeil C.P., Consolmagno G.J., Safarik D.J., Britt D.T., 2012, Stony meteorite thermal properties and their relationship to meteorite chemical and physical states, Meteoritics & Planetary Science, 47, s. 319–329.
  • Ostrowski D., Bryson K., 2019, The physical properties of meteorites, Planetary and Space Science, https://doi.org/10.1016/j.pss.2018.11.003.
  • Petrovic J.J., 2001, Review mechanical properties of meteorites and their constituents, Journal of Materials Science, 36, s. 1579–1583.
  • Przylibski T.A., 2016, Chondryt Sołtmany, Acta Societatis Metheoriticae Polonorum, 7, s. 93–122.
  • Ringwood A.E., 1966, Chemical evolution of the terrestrial planets, Geochimica et Cosmochimica Acta, 30, s. 41-104.
  • Rochette P., Sagnotti L., Bourot-Denise M., Consolmagno G.J., Folco L., Gattacceca J., Osete L.M., Pesonen L., 2003, Magnetic classification of stony meteorites: 1. Ordinary chondrites, Meteoritics & Planetary Science, 38, s. 251–268.
  • Rochette P., Gattacceca J., Bonal L., Bourot-Denise M., Chevrier V., Clerc J.P., Consolmagno G.J., Folco L., Gounnelle M., Kohout T., Pesonen L., Quirico E., Sagnotti L., Skripnik A., 2008, Magnetic classification of stony meteorites: 2. Non-ordinary chondrites, Meteoritics & Planetary Science, 43, s. 959–980.
  • Rochette P., Gattacceca J., Lewandowski M., 2012, Magnetic classification of meteorites and application to the Sołtmany fall, Meteorites, 2, s. 67–71.
  • Rubin A. E., 1990, Kamacite and olivine in ordinary chondrites, intergroup and intragroup relationships, Geochimica et Cosmochimica Acta, 54, s. 1217–1232.
  • Smith D.L., Ernst R.E., Samson C., Herd R., 2006, Stony meteorite characterization by non-destructive measurement of magnetic properties, Meteoritics & Planetary Science, 41, s. 355–373.
  • Stacey F.D., 2005, High pressure equations of state and planetary interiors, Reports on Progress in Physics, 68, s. 341–383.
  • Szurgot M., 2015a, Mean atomic weight of Earth, Moon, Venus, Mercury and Mars. Effect of mass of cores and density of planets, Lunar and Planetary Science Conference XXXXVI, #1536.pdf
  • Szurgot M., 2015b, Core mass fraction and mean atomic weight of terrestrial planets, moon, and protoplanet Vesta, Comparative Tectonics and Geodynamics of Venus, Earth, and Rocky Exoplanets Workshop. #5001.pdf
  • Szurgot M., 2015c, Średni ciężar atomowy chondrytu Sołtmany, chondrytów L6 i minerałów pozaziemskich, Acta Societatis Metheoriticae Polonorum, 6, s. 107–128.
  • Szurgot M., 2015d, Mean atomic weight of Chelyabinsk and Olivenza LL5 chondrites, Meteoritics & Planetary Science, 50 (S1), #5008.pdf
  • Szurgot M., 2015e, Mean atomic weight of Pułtusk meteorite and H chondrites, Meteoritics & Planetary Science, 50 (S1), #5013.pdf
  • Szurgot M., 2015f, Mean atomic number of Chelyabinsk, Sołtmany and Pułtusk meteorites, 57 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 172–173.
  • Szurgot M., 2015g, Średni ciężar atomowy minerałów pozaziemskich, 57 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 174–175.
  • Szurgot M., 2016a, Mean atomic weight of L/LL and H/L intermediate ordinary chondrites, Lunar and Planetary Science Conference 47th, Abstract #2180.
  • Szurgot M., 2016b, Mean atomic weight of ordinary chondrites. Effect of petrologic type, Meteoritics & Planetary Science, 51(S1), #6021.pdf
  • Szurgot M., 2016c, Mean atomic weight of Białystok eucrite, Łowicz mesosiderite, and Baszkówka chondrite, Meteoritics & Planetary Science, 51 (S1), #6005.pdf
  • Szurgot M., 2016d, Średni ciężar atomowy chondrytów LL5: Siena, Hautes Fagnes i NWA 7915, Acta Societatis Metheoriticae Polonorum, 7, s. 133–143.
  • Szurgot M., 2016e, Mean atomic weight and mean atomic number of Košice and Pułtusk H4-5 chondrites, 58 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 173–174.
  • Szurgot M., 2016f, Metamorphic temperature of Escalón H4 chondrite determined by olivine-chromite geothermometer, 58 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 177–178.
  • Szurgot M., 2017a, Mean atomic weight of Earth and enstatite chondrites, Lunar and Planetary Science Conference 48th, Abstract #1130.
  • Szurgot M., 2017b, Mean atomic weight of chondrules and matrices in Semarkona, Allende and Sharps meteorites, LPI Contrib. No. 1963, Workshop on Chondrules and Protoplanetary Disk, Abstract #2002.
  • Szurgot M., 2017c, Mean atomic weight of Kakangari meteorite, its chondrules and matrix, 59 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 143–144.
  • Szurgot M., 2017d, Średni ciężar atomowy chondrytu Ensisheim (LL6), Acta Societatis Metheoriticae Polonorum, 8, s. 110–122.
  • Szurgot M., 2017e, Mean atomic weight of Stubenberg meteorite, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6005
  • Szurgot M., 2017f, Uncompressed density of the Moon, lunar mantle and core, LPI Contrib. No. 2021, Workshop on Modern Analytical Methods Applied to Earth, Planetary, and Material Sciences II 2017, Abstract #6007
  • Szurgot M., 2017g, Relationship between density of planetary materials and iron to silicon ratio. Grain density for ordinary chondrites, and uncompressed density for Moon, Earth, Venus, and Mars, Meteoritics & Planetary Science, 52 (S1), #6008.pdf.
  • Szurgot M., 2017h, Dependence of density on iron to silicon ratio for extraterrestrial matter, 59 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 145–146.
  • Szurgot M., 2017i, Relationship between density of chondrules and Fe/Si ratio, 59 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 147–148.
  • Szurgot M., Wach R.A., Bartoschewitz R., 2017, Mean atomic weight of Braunschweig meteorite, Meteoritics & Planetary Science, 52 (S1), #6002.pdf.
  • Szurgot M., 2018a, Mean atomic weight of ordinary chondrites from Spanish falls, LPI Contrib. No. 2083, Lunar and Planetary Science Conference 49th, Abstract #1039.
  • Szurgot M., 2018b, Mean atomic weight of L’Aigle chondrite, LPI Contrib. No. 2067, Meteoritics & Planetary Science, 53 (S3), #6001.pdf.
  • Szurgot M., 2018c, Mean atomic weight and grain density of Košice chondrite, LPI Contrib. No. 2067, Meteoritics & Planetary Science, 53 (S1), #6002.pdf.
  • Szurgot M. A., 2018d, Mean atomic weight, grain density and thermophysical properties of Grzempach H5 chondrite, 60 Konwersatorium Krystalograficzne, Wrocław, Streszczenia komunikatów, s. 288–289.
  • Szurgot M., 2018e, Średni ciężar atomowy chondrytu Vicęncia (LL3.2), Acta Societatis Metheoriticae Polonorum, 9, s. 126–144.
  • Wilkison S.L., Robinson M.S., 2000, Bulk density of ordinary chondrite meteorites and Implications for asteroidal internal structure. Meteoritics & Planetary Science, 35, s. 1203–1213.
  • Wlotzka F., 2003, A weathering scale for the ordinary chondrites, Meteoritics, 28, s. 460–460.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e4285926-965c-4e23-9c3d-2b49a02d7045
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.