PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 135 | 227-248
Article title

Forecasting Landslide in Chukha from Index Properties of Soil-Research to Policy Making

Content
Title variants
Languages of publication
EN
Abstracts
EN
The Kingdom of Bhutan is located in the eastern Himalayas approximately between latitudes 26° 41’52” N to 28° 14’ 52” N and longitudes 88° 44’ 54” E to 92° 41’ 7” E. The 38,686 square kilometers of landlocked and isolated mountain country has elevations ranging from about 160 meters in the southern part to more than 7500 meters in the northern part. People habituating along the steep slope valleys with river flowing at the foot of gorges are the finest epitome of exquisite scenery for outside world. However, such slopes particularly the unstable and loose ones pose greatest threat to the mankind and the development of the country. The complex arrangement of topography, constant tectonic movement and others human induced activities accelerate the landslide which are already active. The landslide problems in Bhutan dates back to 1960s when first road construction took place in the country. Every monsoon season is marked with countless landslide across the country, among which the landslide between Phuntsholing to Thimphu highway is the most frequent and disparaging. Many people lose their valuables and lives during the summer season every year due to landslides and falling stones on the highway. This research will help in bettering the knowledge in landslides and also combating it with necessary means. The main objective of this study is to comprehend the activating processes and mechanism of the landslide as well as examine to predict the possibility of another landslide by seeking natural causes and anthropogenic factors.
Year
Volume
135
Pages
227-248
Physical description
Contributors
  • Civil Engineering and Architecture Department, College of Science and Technology, Royal University of Bhutan, Phuentsholing, Bhutan
author
  • Department of Civil Engineering, Delhi Technological University, Delhi, India
  • Civil Engineering and Architecture Department, College of Science and Technology, Royal University of Bhutan, Phuentsholing, Bhutan
  • Department of Civil Engineering and Surveying, Jigme Namgyel Engineering College, Samdrup Jongkhar, Bhutan
References
  • [1] Abhirup Dikshit, Raju Sarkar, Biswajeet Pradhan, Saroj Acharya and Kelzang Dorji. Estimating Rainfall Thresholds for Landslide Occurrence in the Bhutan Himalayas. Water 2019, 11(8), 1616. https://doi.org/10.3390/w11081616
  • [2] Petley, D. Global patterns of loss of life from landslides. Geology 2010, 40, 927–930.
  • [3] Rosi, A.; Peternel, T.; Jemec-Auflič, M.; Komac, M.; Segoni, S.; Casagli, N. Rainfall thresholds for rainfall-induced landslides in Slovenia. Landslides 2016, 13, 1571–1577.
  • [4] Gariano, S.L.; Brunetti, M.; Iovine, G.; Melillo, M.; Peruccacci, S.; Terranova, O.; Vennari, C.; Guzzetti, F. Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 2015, 228, 653–665.
  • [5] Segoni, S.; Piciullo, L.; Gariano, S.L. A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 2018, 15, 1483–1501.
  • [6] Lagomarsino, D.; Segoni, S.; Rosi, A.; Rossi, G.; Battistini, A.; Catani, F.; Casagli, N. Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat. Hazards Earth Syst. Sci. 2015, 15, 2413–2423.
  • [7] Melillo, M.; Brunetti, M.T.; Peruccacci, S.; Gariano, S.L.; Guzzetti, F. An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 2015, 12, 311–320.
  • [8] Iadanza, C.; Trigila, A.; Napolitano, F. Identification and characterization of rainfall events responsible for triggering of debris flows and shallow landslides. J. Hydrol. 2016, 541, 230–245.
  • [9] Staley, D.M.; Kean, J.W.; Cannon, S.H.; Schmidt, K.M.; Laber, J.L. Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 2013, 10, 547–562.
  • [10] Piciullo, L.; Calvello, M.; Cepeda, J.M. Territorial early warning systems for rainfall-induced landslides. Earth Sci. Rev. 2018, 179, 228–247. [Google Scholar] [CrossRef]
  • [11] Gariano, S.L.; Sarkar, R.; Dikshit, A.; Dorji, K.; Brunetti, M.T.; Peruccacci, S.; Melillo, M. Automatic calculation of rainfall thresholds for landslide occurrence in Chukha Dzongkhag, Bhutan. Bull. Eng. Geol. Environ. September 2019, Volume 78, Issue 6, pp 4325–4332. https://doi.org/10.1007/s10064-018-1415-2
  • [12] Sengupta, A.; Gupta, S.; Anbarasu, K. Rainfall thresholds for the initiation of landslide at Lanta Khola in North Sikkim, India. Nat. Hazards 2010, 52, 31–42.
  • [13] Kanungo, D.P.; Sharma, S. Rainfall thresholds for prediction of shallow landslides around Chamoli-Joshimath region, Garhwal Himalayas, India. Landslides 2014, 11, 629–638.
  • [14] Dikshit, A.; Sarkar, R.; Satyam, N. Probabilistic approach toward Darjeeling Himalayas landslides - A case study. Cogent Eng. 2018, 5, 1537539.
  • [15] Gabet, E.J.; Burbank, D.W.; Putkonen, J.K.; Pratt-Sitaula, B.A.; Oiha, T. Rainfall thresholds for landsliding in the Himalayas of Nepal. Geomorphology 2004, 63, 131–143.
  • [16] Peruccacci, S.; Brunetti, M.T.; Luciani, S.; Vennari, C.; Guzzetti, F. Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 2012, 139–140, 79–90.
  • [17] Peruccacci, S.; Brunetti, M.T.; Gariano, S.L.; Melillo, M.; Rossi, M.; Guzzetti, F. Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 2017, 290, 39–57.
  • [18] Segoni, S.; Rosi, A.; Lagomarsino, D.; Fanti, R.; Casagli, N. Brief communication: Using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat. Hazards Earth Syst. Sci. 2018, 18, 807–812.
  • [19] Polemio, M.; Sdao, F. The role of rainfall in the landslide hazard: The case of the Avigliano urban area (Southern Apennines, Italy). Eng. Geol. 1999, 53, 297–309.
  • [20] Terlien, M.T.J. The determination of statistical and deterministic hydrological landslide-triggering thresholds. Environ. Geol. 1998, 35, 124–130.
  • [21] Pagano, L.; Picarelli, L.; Rianna, G.; Urciuoli, G. A simple numerical procedure for timely prediction of precipitation-induced landslides in unsaturated pyroclastic soils. Landslides 2010, 7, 273.
  • [22] Marques, R.; Zêzere, J.; Trigo, R.; Gaspar, J.; Trigo, I. Rainfall patterns and critical values associated with landslides in Povoação County (São Miguel Island, Azores): Relationships with the North Atlantic Oscillation. Hydrol. Proc. 2008, 22, 478–494.
  • [23] Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263.
  • [24] Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181.
  • [25] Sarkar, R.; Dorji, K. Determination of the Probabilities of Landslide Events - A Case Study of Bhutan. Hydrology 2019, 6, 52.
  • [26] Brunetti, M.T.; Peruccacci, S.; Rossi, M.; Luciani, S.; Valigi, D.; Guzzetti, F. Rainfall thresholds for the possible occurrence of landslides in Italy. Nat. Hazards Earth Syst. Sci. 2010, 10, 447–458.
  • [27] Guzzetti, F.; Peruccacci, S.; Rossi, M.; Stark, C.P. Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol. Atmos. Phys. 2007, 98, 239–267.
  • [28] Mercogliano, P.; Segoni, S.; Rossi, G.; Sikorsky, B.; Tofani, V.; Schiano, P.; Catani, F.; Casagli, N. Brief communication: A prototype forecasting chain for rainfall induced shallow landslides. Nat. Hazards Earth Syst. Sci. 2013, 13, 771–777.
  • [29] Thiebes, B.; Bell, R.; Glade, T.; Jäger, S.; Mayer, J.; Anderson, M.; Holcombe, L. Integration of a limit-equilibrium model into a landslide early warning system. Landslides 2014, 11, 859–875.
  • [30] Huggel, C.; Khabarov, N.; Obersteiner, M.; Ramírez, J.M. Implementation and integrated numerical modeling of a landslide early warning system: A pilot study in Colombia. Nat. Hazards 2010, 52, 501–518.
  • [31] Dikshit, A.; Satyam, D.N. Estimation of rainfall thresholds for landslide occurrences in Kalimpong, India. Innov. Infrastruct. Solut. 2018, 3, 24.
  • [32] Segoni, S.; Rosi, A.; Fanti, R.; Gallucci, A.; Monni, A.; Casagli, N. A Regional-Scale Landslide Warning System Based on 20 Years of Operational Experience. Water 2018, 10, 1297.
  • [33] Reichenbach, P.; Cardinali, M.; De Vita, P.; Guzzetti, F. Regional hydrological thresholds for landslides and floods in the Tiber River Basin (Central Italy). Environ. Geol. 1998, 35, 146–159.
  • [34] Aleotti, P. A warning system for rainfall-induced shallow failures. Eng. Geol. 2004, 73, 247–265.
  • [35] Rosi, A.; Canavesi, V.; Segoni, S.; Nery, T.D.; Catani, F.; Casagli, N. Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds. Geosciences 2019, 9, 203.
  • [36] Segoni, S.; Rossi, G.; Rosi, A.; Catani, F. Landslides triggered by rainfall: A semiautomated procedure to define consistent intensity-duration thresholds. Comput. Geosci. 2014, 63, 123–131.
  • [37] Anbalagan, R., Kumar, R., Lakshmanan, K., Parida, S., & Neethu, S. (2015). Landslide hazard zonation mapping using frequency ratio and fuzzy logic approach, a case study of Lachung Valley, Sikkim. Geoenvironmental Disasters, 2(1), 11. https://doi.org/10.1186/s40677-014-0009-y
  • [38] Epada, P. D., Sylvestre, G., & Tabod, T. C. (2012). Geophysical and Geotechnical Investigations of a Landslide in Kekem Area, Western Cameroon. International Journal of Geosciences, 03(04), 780–789. https://doi.org/10.4236/ijg.2012.34079
  • [39] J Satheesh, L., & B.L, D. (2016). Investigation of Geotechnical Properties of the Soil Susceptible to Landslide. International Journal of Engineering Trends and Technology, 36(9), 477–480. https://doi.org/10.14445/22315381/ijett-v36p2
  • [40] Jeong, S., Lee, K., Kim, J., & Kim, Y. (2017). Analysis of rainfall-induced landslide on unsaturated soil slopes. Sustainability 9(7), 1–20. https://doi.org/10.3390/su9071280
  • [41] Kitutu, M. G., Muwanga, A., Poesen, J., & Deckers, J. A. (2009). Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda. African Journal of Agricultural Research, 4(7), 611–620.
  • [42] Mugagga, F., Kakembo, V., & Buyinza, M. (2012). A characterisation of the physical properties of soil and the implications for landslide occurrence on the slopes of Mount Elgon, Eastern Uganda. Natural Hazards, 60(3), 1113–1131. https://doi.org/10.1007/s11069-011-9896-3
  • [43] Sharma, L. P., Patel, N., Debnath, P., & Ghose, M. K. (2012). Assessing landslide vulnerability from soil characteristics-a GIS-based analysis. Arabian Journal of Geosciences, 5(4), 789–796. https://doi.org/10.1007/s12517-010-0272
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e322eeac-ef79-42d1-9c71-85f0a50c0682
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.