Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 15 | 4 | 17-23

Article title

The influence of cadmium exposure on excretion of pyridinoline and deoxypyridinoline in urine

Content

Title variants

PL
Wpływ narażenia na kadm na wydalanie pirydynoliny i dezoksypirydynoliny z moczem

Languages of publication

EN

Abstracts

EN
Background: Osteoporosis is a growing health concern
across the world. Some epidemiological data suggest that
cadmium increases risk for development of osteoporosis
and lead to higher rate of fracture incidents even on low
environmental exposure level. Material and methods:
Cadmium in urine and bone resorption markers – total
fraction of the urinary pyridynoline (Pyr) and deoxypyridinoline
(DPyr) – were determined in 36 patients, who were
examined for toxic effects of cadmium exposure. Additionally
calcium in urine was determined. Associations between
cadmium exposure and factors related to bone metabolism
were estimated and Pyr and DPyr excretion were compared
in three groups categorized across cadmium concentrations.
Results: In the investigated group there were significant
positive correlations between cadmium levels in urine and
Pyr and DPyr excretion. None of the other variables correlated
significantly with examined bone resorption markers
excluding calcium excretion in urine. Excretion of Pyr
and DPyr differed significantly between group with the
lowest cadmium concentration (<1.2 μg/g creatinine) and
group with the highest cadmium concentration (>1.9 μg/g
creatinine), where median values of Pyr and DPyr increased
by 49.8% and 37.5%, respectively. Conclusion: The results
suggest that cadmium increases bone resorption processes
and induce osteotoxic effects in environmental exposure
level.
PL
Wstęp: Osteoporoza jest rosnącym problemem na świecie.
Niektóre badania epidemiologiczne sugerują, że kadm
zwiększa ryzyko rozwoju tej choroby i prowadzi do zwiększenia
ryzyka złamań kości nawet przy niskim narażeniu
środowiskowym. Materiał i metody: Kadm w moczu oraz
biomarkery resorpcji kostnej – całkowite frakcje pirydynoliny
(Pyr) i dezoksypirydynoliny (DPyr) w moczu – były
oznaczane u 36 pacjentów badanych pod kątem toksycznego
działania kadmu. Dodatkowo oznaczano zawartość
wapnia w moczu. Oszacowano zależności pomiędzy narażeniem
na kadm a czynnikami powiązanymi z metabolizmem
kości oraz porównano stężenia Pyr oraz DPyr pomiędzy
grupami skategoryzowanymi względem stężenia kadmu
w moczu. Wyniki: W badanej grupie wykazano statystycznie
istotną pozytywną korelację pomiędzy poziomem kadmu
w moczu, a ilością wydalanej Pyr i DPyr z moczem.
Żadna z innych badanych zmiennych nie korelowała znacząco
z markerami resorpcji kości oprócz wydalania wapnia
z moczem. Zróżnicowanie wydalania Pyr i DPyr było
statystycznie istotne pomiędzy grupami o najniższym
(<1.2 μg/g kreatyniny) i najwyższym stężeniu kadmu
w moczu (>1.9 μg/g kreatyniny), w której mediany wartości
stężeń Pyr i DPyr wzrosły odpowiednio o 49,8%
i 37,5%. Wnioski: Wyniki badań sugerują, że kadm wzmaga
procesy resorpcji kości i działa osteotoksycznie również
w narażeniu środowiskowym.

Contributors

  • Department of Chemical Hazards and Genetic Toxicology, Institute of Occupational Medicine and Environmental Health
author
  • Department of Chemical Hazards and Genetic Toxicology, Institute of Occupational Medicine and Environmental Health
  • Department of Chemical Hazards and Genetic Toxicology, Institute of Occupational Medicine and Environmental Health
author
  • Department of Chemical Hazards and Genetic Toxicology, Institute of Occupational Medicine and Environmental Health
  • Department of Chemical Hazards and Genetic Toxicology, Institute of Occupational Medicine and Environmental Health; Department of General and Inorganic Chemistry, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Silesia

References

  • 1. WHO, IPCS, Environmental Health Criteria 134; Cadmium, 1992.
  • 2. Järup L., Ākesson A.: Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 2009; 238 (3): 201-208.
  • 3. Galazyn-Sidorczuk M., Brzoska M.M., Moniuszko-Jakoniuk J.: Estimation of Polish cigarettes contamination with cadmium and lead, and exposure to these metals via smoking. Environ Monit Assess 2008; 137 (3): 481-493.
  • 4. WHO, Biological monitoring of chemical exposure in the workplace. Guidelines Volume 1. Geneva: World Health Organization 1996.
  • 5. Nordberg G.F.: Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 2009; 238 (3): 192-200.
  • 6. Terelak H.: Metale ciężkie i siarka w glebach użytków rolnych Polski. Prob Ekol 2005; 5: 259-264.
  • 7. Kabata-Pendias A., Piotrowska M., Motowicka-Terelak T. et al.: Podstawy oceny chemicznego zanieczyszczenia gleb. Biblioteka Monitoringu Środowiska, Warszawa 1995.
  • 8. Łukasiewicz J., Marowska J., Kobylińska M. et al.: Metoda oznaczania w moczu pirydyno liny i dezoksypirydynoliny, specyficznych biochemicznych markerów resorpcji kości. Diagn lab 1995; 31: 325-335.
  • 9. Alfvén T., Elinder C.G., Carlsson M.D. et al.: Low level cadmium exposure and osteoporosis. J. Bone Mineral Res 2000; 15 (8): 1579-1586.
  • 10. Jin T., Nordberg G., Ye T. et al.: Osteoporosis and renal dysfunction in a general population exposed to Cadmium in China. Environ Res 2004; 96 (3): 353-359.
  • 11. Wang H., Zhu G., Shi Y. et al.: Influence of environmental cadmium exposure on forearm bone density. J Bone Miner Res 2003; 18 (3): 553-560.
  • 12. Chen X., Zhu G., Jin T. et al.: Changes in bone mineral density 10 years after marked reduction of cadmium exposure in a Chinese population. Environ Res 2009; 109 (7): 874-879.
  • 13. Honda, R., Tsuritani, I., Noborisaka, Y. et al.: Urinary cadmium excretion is correlated with calcaneal bone mass in Japanese women living in an urban area. Environ Res 2003; 91 (2): 63-70.
  • 14. Gallagher C.M., Kovach J.S., Meliker J.R.: Urinary cadmium and osteoporosis in U.S. women age 50 and older, NHANES 1988–1994 and 1999–2004. Environ Health Perspect 2008; 116 (10): 1338-1343.
  • 15. Akesson A., Bjellerup P., Lundh T. et al.: Cadmium-induced effects on bone in a population-based study of women. Environ Health Perspect 2006; 114 (6): 830-834.
  • 16. Schutte R., Nawrot T.S., Richart T. et al.: Bone resorption and environmental exposure to cadmium in women: a population study. Environ Health Perspect 2008; 116 (6): 777-783.
  • 17. Bhattacharyya M. H.: Cadmium osteotoxicity in experimental animals: Mechanisms and relationship to human exposures Toxicol Appl Pharmacol 2009; 238 (3): 258-265.
  • 18. Horiguchi, H., Oguma, E., Sasaki, S. et al.: Environmental exposure to cadmium at a level insufficient to induce renal tubular dysfunction does not affect bone density among female Japanese farmers. Environ Res 2005; 97 (1): 83-93.
  • 19. Trzcinka-Ochocka M., Jakubowski M., Szymczak W. et al. The effects of low environmental cadmium exposure on bone density. Environ Res 2010; 110 (3): 286-293.
  • 20. Engstrom A., Skerving S., Lidfeldt J. et al.: Cadmium-induced bone effect is not mediated via low serum 1,25-dihydroxy vitamin D. Environ Res 2009; 109 (2): 188-192.
  • 21. Suwazono Y., Sand S, Vahter M et al.: Benchmark dose for cadmium- induced osteoporosis in women. Toxicol Lett 2010; 197 (2): 123-127.
  • 22. Engstrom A., Michaelsson K., Suwazono Y. et al.: Long-term cadmium exposure and the association with bone mineral density and fracture in a population-based study among women. J Bone Miner Res 2011; 26 (3): 486-495.
  • 23. Thomas L. D, Michaelsson K., Vahter M. et al.: Dietary cadmium exposure and fracture incidence among men: A population-based prospective cohort study. J Bone Miner Res 2011; 26 (7): 1601-1608.

Document Type

paper

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e31e0e02-cade-48f2-8994-9dac4d3b9826
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.