Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 6 | 26-32

Article title

Material problems and prospects of Li-ion batteries for vehicles applications



Title variants

Languages of publication



The paper reviews material issues of development of Li-ion batteries for vehicles application. The most important of them is safety, which is related to application of nonflammable electrolyte with large electrochemical window and possibility of forming protective SEI (solid/electrolyte interface) to prevent plating of lithium on carbon anode during fast charge of the batteries. The amount of electrical energy, which a battery is able to deliver, depend on the electromotive power of the cell as well as on its capacity – both these factors are related to the chemistry of electrode materials. Nanotechnology applied to electrode materials may be a breakthrough for Li-batteries performance due to extreme reactivity of nanoparticles in relation to lithium. The electrode-electrolyte interface phenomena are decisive for a cell lifetime. Review of physicochemical properties of intercalated transition metal compounds with layered, spinel or olivine-type structure is provided in order to correlate their microscopic electronic properties, i.e. the nature of electronic states, with the efficiency of lithium intercalation process, which is controlled by the chemical diffusion coefficient of lithium. Data concerning cell voltage and character of discharge curves for various materials are correlated with the nature of chemical bonding and electronic structure. Proposed electronic model of the intercalation process allow for prediction and design of operational properties of intercalated electrode materials. Proposed method of measuring the LixMaXb potential on the basis of the measurement of the electromotive force of the Li/Li+/LixMaXb electrochemical cell is a powerful tool of solid state physics allowing for direct observation of the Fermi level changes in such systems as a function of lithium content.


  • Faculty of Energy and Fuels, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Kraków, Poland


  • M. S. Whittingham, Prog. Solid State Chem. 12, 41 (1978).
  • J.-M. Tarascon, M. Armand, Nature 414, 359 (2001).
  • Lithium Batteries, New Materials, Development and Perspectives, ed. G. Pistoia (Elsevier, 1994).
  • J. B. Goodenough, Y. Kim, Chem. Mater. 22, 587 (2010).
  • R. Fong, U. van Sacken, J. R. Dahn, J. Electrochem. Soc. 137, 2009 (1990).
  • J. Liu, A. Manthiram, J. Electrochem. Soc. 156, A833 (2009).
  • Y. Wu, A. Manthiram, Solid State Ionics 180, 50 (2009).
  • J. Molenda, Bull. Pol. Acad. Sci. Chem. 45, 449 (1997).
  • D. Than, J. Molenda and A. Stokłosa, Electrochim. Acta 36, 1555 (1991).
  • Molenda and T. Bąk, Phys. Stat. Sol. (a) 135, 263 (1993).
  • Molenda and A. Stokłosa, Solid State Ionics 36, 43 (1989).
  • J. Molenda, T. Bąk and J. Marzec, Phys. Stat. Sol.(a) 156, 159 (1996).
  • J. Molenda, P. Wilk and J. Marzec, Solid State Ionics 146, 73 (2002).
  • J. Molenda and A. Kubik, Solid State Ionics 117, 57 (1999).
  • J. Molenda and T. Bąk, Phys. Stat. Sol. (b) 178, 205 (1993).
  • J. Molenda, T. Bąk and A. Stokłosa, Physica C 207, 147 (1993).
  • J. Molenda et al., Solid State Ionics 119, 61 (1999).
  • J. Molenda et al., Solid State Ionics 135, 53 (2000).
  • J. Molenda et al., Solid State Ionics 171, 215 (2004).
  • J. Molenda et al., Solid State Ionics 177, 2617 (2006).
  • J. Molenda, J. Marzec, Funct. Mater. Lett. 2, 1 (2009).
  • J. Molenda, A. Milewska, J. Power Sources 194, 88 (2009).
  • M. Gozu, K. Świerczek, J. Molenda, J. Power Sources 194, 38 (2009).
  • Milewska, M. Molenda, J. Molenda, Solid State Ionics (2010), doi: 10.1016/j.ssi.2010.11.026.
  • J.-M. Tarascon and D. Guyomard, Electrochim. Acta 38, 1221 (1993).
  • G. G. Amatucci, N. Pereira, T. Zheng, J.-M. Tarascon, J. Electrochem. Soc. 148, A171 (2001).
  • Y.-K. Sun, Electrochem. Comm. 2, 6 (2000).
  • K. Padhi et al., J. Electrochem. Soc. 144, 1609 (1997).
  • J. B. Goodenough, in Lithium Ion Batteries, eds. M. Wakihara and O. Yamamoto (Kodansha 1998).
  • S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nat.Mater. 1, 123 (2002).
  • J. Marzec, W. Ojczyk and J. Molenda, J. Mater. Sci. Pol. 24, 69 (2006).
  • J. Molenda, J. Marzec, Funct. Mater. Lett. 1, 97 (2008).
  • P. S. Herle et al., Nat. Mater. 3, 147 (2004).
  • W. Ojczyk et al., J. Power Sources 173, 700 (2007).
  • Kang, G. Ceder, Nature 458, 190 (2009).

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.