Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2011 | 6 | 70-76

Article title

Development of nanostructured hybrid materials for application as catalysts in low-temperature polymermembrane fuel cells: electrooxidation of ethanol at platinum supported on gold admixed with titanium oxide


Title variants

Languages of publication



A concept of utilization of titanium dioxide matrix in electrocatalysis (ethanol oxidation in acid medium for potential application in a low temperature fuel cell cell) by admixing it with polyoxometallate (phosphomolybdate) stabilized gold nanoparticles is described here. By dispersing platinum black over the Au-containing TiO2, the electrocatalytic activity of Pt nanoparticles towards oxidation of ethanol has been significantly enhanced. Remarkable increases of electrocatalytic currents measured under diagnostic voltammetric and chronoamperometric conditions are reported here. The most likely explanation takes into account improvement of overall conductivity (due to the presence of nanostructured gold) at the electrocatalytic interface (utilizing TiO2 support), as well as and possibility of specific Pt-TiO2 or Pt-Au electronic interactions and existence of active hydroxyl groups (on titanium dioxide or polyoxometallate surfaces) in the vicinity of catalytic Pt sites.



  • Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
  • Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
  • Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
  • Department of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland


  • C. Lamy, J.-M. Léger, S. Srinivasan, Direct methanol fuel cells – from a 20th century electrochemists’ dream to a 21st century emerging technology, in : J.O.M. Bockris, B.E. Comway (Eds.), Modern Aspects of Electrochemistry, Vol. 34, Plenum Press, New York, 2000 (Chapter 3), pp.53-117
  • C. Lamy, A. Lima, V. LeRhun, F. Delime, C. Coutanceau, J. Léger, Journal of Power Sources 105 (2002) 283
  • J.W. Gosselink, Int. J. Hydrogen Energy 27 (2002) 1125
  • H. Hitmi, E.M. Belgsir, J.-M. Léger, C. Lamy, O. Lezna, Electrochim. Acta 39 (1994) 407.
  • T. Iwasita, E. Pastor, Electrochim. Acta 39 (1994) 531.
  • J.-M. Léger, S. Rousseau, C. Coutanceau, F. Hahn, C. Lamy, Electrochim. Acta 50 (2005) 5118.
  • E. Pastor, T. Iwasita, Electrochim. Acta 39 (1994) 547.
  • N.R. Detacconi, R.O. Lezna, B. Beden, F. Hahn, C. Lamy, J. Electroanal. Chem. 379 (1994) 329.
  • J.P.I. de Souza, S.L. Queiroz, K. Bergamaski, E.R. Gonzalez, F.C. Nart, J. Phys. Chem. B 106 (2002) 9825.
  • J. Willsau, J. Heitbaum, J. Electroanal. Chem. 194 (1985) 27.
  • T. Iwasita, B. Rasch, E. Cattaneo, W. Vielstich, Electrochim. Acta 34 (1989) 1073.
  • S.C. Chang, L.W.H. Leung, M.J. Weaver, J. Phys. Chem. 94 (1990) 6013.
  • J.W. Shin, W.J. Tornquist, C. Korzeniewski, C.S. Hoaglund, Surf. Sci. 364 (1996) 122.
  • M. Haruta, Catal. Today 36 (1997) 153.
  • Y. Iizuka, T. Tode, T. Takao, K.-I. Yatsu, T. Takeuchi, S. Tsubota, M. Haruta, J. Catal. 187 (1999) 50.
  • H.G. Lang, S. Maldonado, K.J. Stevenson, B.D. Chandler, J. Am. Chem. Soc. 126 (2004) 12949.
  • S.G. Zhou, K. McIlwrath, G. Jackson, B. Eichhorn, J. Am. Chem. Soc. 128 (2006) 1780.
  • W. Li, H. Ma, J. Zhang, X. Liu, X. Feng, J. Phys. Chem. C 113 (2009) 1738.
  • N. Kristian, Y. S. Yan, X. Wang, Chem. Commun. (2008) 353
  • M. Chojak, A. Kolary-Zurowska, R. Wlodarczyk, K. Miecznikowski, K. Karnicka, B. Palys, R. Marassi, P.J. Kulesza, Electrochim. Acta 52 (2007) 5574.
  • P.J. Barczuk, A. Lewera, K. Miecznikowski, A. Zurowski, P.J. Kulesza, J. Power Sources 195 (2010) 2507.
  • P.J. Kulesza, K. Karnicka, K. Miecznikowski, M. Chojak, A. Kolary, P.J. Barczuk, G. Tsirlina, W. Czerwinski, Electrochim. Acta 50 (2005) 5155.
  • K. Karnicka, M. Chojak, K. Miecznikowski, M. Skunik, B. Baranowska, A. Kolary, A. Piranska, B. Palys, L. Adamczyk, P.J. Kulesza, Bioelectrochemistry 66 (2005) 79.
  • M. Lublow, K. Skorupska, S. Zoladek, P. J. Kulesza, T. Vo-Dinh H.J. Lewerenz, Electrochem. Commun. 12 (2010) 1298.
  • S. Zoladek, I.A. Rutkowska, K. Skorupka, B. Parys, P.J. Kulesza, Electrochim. Acta (2011) in press accessible on line doi: 10.1016/j.electacta.2011.04.020
  • P. K. Shen and A. C. C. Tseung, J. Electrochem. Soc. 141 (1994) 3082.
  • B. E. Hayden, D. V. Malevich, D. Pletcher, Electrochem. Commun. 3 (2001) 395.
  • F. Micoud, F. Maillard, A. Bonnefont, N. Job, M. Chatenet, Physical Chemistry Chemical Physics 12 (2010) 1182.
  • R.S. Mane, W.J. Lee, H.M. Pathan, S.-H. Han, J. Phys. Chem. B 109 (2005) 24254.
  • N.A. Galiote, A.J.F. Carvalho, F. Huguenin, J. Phys. Chem. B 110 (2006) 24612.
  • D.B. Chu, X.F. Zhou, C.J. Lin, Chem. J. Chinese U. 21 (2000) 133.
  • B.E. Hayden, D.V. Malevich, D. Pletcher, Electrochem. Commun. 3 (2001) 390.
  • K. D. Schierbaum, S. Fischer, P. Wincott, P. Hardman, V. Dhanak, G. Jones, G. Thornton Surf. Sci. 391 (1997) 196.
  • J. M. Herrmann, J. Disdier, P. Pichat, Stud. Surf. Sci. Catal. 11 (1982) 27.
  • J. H. Liu, C. B. Yu, Chem. J. Chin. Univ. 24 (2003) 2263.
  • P. N. Njoki, A. Jacob, B. Khan, J. Luo, C. J. Zhong, J. Phys. Chem. B 110 (2006) 22503.
  • P. N. Njoki, J. Luo, L.Y. Wang, M. M. Maye, H. Quaizar, C. J. Zhong, Langmuir 21 (2005) 1623.
  • D. Mott, J. Luo, P. N. Njoki, Y. Lin, L. Y. Wang, C. J. Zhong, Catal. Today 122 (2007) 378.
  • D. Mott, J. Luo, A. Smith, P. N. Njoki, L. Y. Wang, C. J. Zhong, Nanoscale Res. Lett. 2 (2007) 12.
  • W. Tang, S. Jayaraman, T. F. Jaramillo, G. D. Stucky, F. W. McFafland, J. Phys. Chem.C 113 (2009) 5014.
  • Y. Lou, M. M. Maye, L. Han, J. Luo and C. Zhong, Chem. Commun. 5 (2001) 473.
  • W. Li, H. Ma, J. Zhang, X. Liu, X. Feng, J. Phys. Chem. C 113 (2009) 1738.

Document Type


Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.