Journal
Article title
Authors
Content
Full texts:
Title variants
Amyloids and prionoids – is there a time to be afraid?
Languages of publication
Abstracts
Nadeszła nowa era mikrobiologii, kiedy zrozumieliśmy, że niekonwencjonalne wirusy kuru, choroby Creutzfeldta--Jakoba (CJD) i zespołu [obecnie „choroby”] Gerstmanna-Sträusslera-Scheinkera (GSS), scrapie, encefalopatii gąbczastej bydła (BSE) są infekcyjnymi białkami amyloidowymi i że pasażowalne encefalopatie gąbczaste są amyloidozami mózgu. Ten cytat z wypowiedzi laureata Nagrody Nobla D. Carletona Gajduska znakomicie ilustruje całość zagadnienia. Amyloid to nazwa ogólna określająca włókienkową czwartorzędową strukturę białka. Wszystkie amyloidy, niezależnie od sekwencji aminokwasów tworzących je białek, tworzą się w wyniku reakcji nukleacji/polimeryzacji, w której agregaty (oligomery), składające się z niewielkiej liczby cząsteczek białka (jądro, seed), nukleują cząsteczki białka prekursorowego, co prowadzi do zmiany konformacji przestrzennej w kierunku harmonijki-β. Choroby wywołane przez takie białka nazywa się prionoidami. „Prawdziwe” priony różnią się zasadniczo od wszystkich innych prionoidów − priony są zakaźnie w sensie mikrobiologicznym, szerzą się między osobnikami, wywołując makroepidemie, takie jak kuru, vCJD, BSE i jatrogenne przypadki CJD. W niniejszym artykule zostaną omówione podstawowe prionoidy − choroby Alzheimera i Parkinsona – oraz relacja łącząca je z chorobami prionowymi.
The new era has come to microbiology as we have realized that the unconventional viruses of kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), scrapie, and bovine spongiform encephalopathy (BSE) are infectious amyloid proteins and that these transmissible spongiform dementias are brain amyloidoses. This quotation from a Nobel laureate, D. Carleton Gajdusek, illustrates the best the content of this paper. Amyloid is a generic term, which embraces the fibrillary cross-β-sheet quaternary structure of any protein. All amyloids, irrespective of their amino acid sequences, are formed through nucleation/polymerization reactions in which oligomeric structures (small aggregates) composed of a limited number of a given protein moiety (a seed) nucleates other moieties. As a result, the β-pleated secondary structure predominates. Such proteins are called “prionoids” as opposed to “real” prions, which are infectious, or transmissible, in a microbiological sense; they spread between individuals and cause macro-epidemics, such as kuru, BSE and iatrogenic CJD. In this review, prions and prionoids, and their inter-relatedness, will be discussed.
Discipline
Publisher
Journal
Year
Volume
Issue
Pages
230–239
Physical description
Contributors
author
- Zakład Patologii Molekularnej i Neuropatologii, Uniwersytet Medyczny w Łodzi, Instytut Nauk o Zdrowiu, Państwowa Wyższa Szkoła Zawodowa w Płocku
References
- 1.Gajdusek D.C.: Spontaneous generation of infectious nucleating amyloids in the transmissible and nontransmissible cerebral amyloidoses. Mol. Neurobiol. 1994; 8: 1–13.
- 2.Liberski P.P., Sikorska B., Lindenbaum S. i wsp.: Kuru: genes, cannibals and neuropathology. J. Neuropathol. Exp. Neurol. 2012; 71: 92–103.
- 3.Liberski P.P., Sikorska B., Brown P.: Kuru: the first prion disease. Adv. Exp. Med. Biol. 2012; 724: 143–153.
- 4.Liberski P.P.: Historical overview of prion diseases: a view from afar. Folia Neuropathol. 2012; 50: 1–12.
- 5.Sikorska B., Liberski P.P.: Human prion diseases: from kuru to variant Creutzfeldt-Jakob disease. Subcell. Biochem. 2012; 65: 457–496.
- 6.Sikorska B., Knight R., Ironside J.W., Liberski P.P.: Creutzfeldt- Jakob disease. Adv. Exp. Med. Biol. 2012; 724: 76–90.
- 7.Prusiner S.B.: Cell biology. A unifying role for prions in neurodegenerative diseases. Science 2012; 336: 1511–1503.
- 8.Aguzzi A., O’Connor T.: Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat. Rev. Drug Discov. 2010; 9: 237–248.
- 9.Prusiner S.B.: Scrapie prions, brain amyloid, and senile dementia. Curr. Top. Cell. Regul. 1985; 26: 79–95.
- 10.Basler K., Oesch B., Scott M. i wsp.: Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986; 46: 417–428.
- 11.Chesebro B., Race R., Wehrly K. i wsp.: Identification of scrapie prion protein-specific mRNA in scrapie-infected and uninfected brain. Nature 1985; 315: 331–333.
- 12.Locht C., Chesebro B., Race R., Keith J.M.: Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl Acad. Sci. USA 1986; 83: 6372–6366.
- 13.Aguzzi A., Calella A.M.: Prions: protein aggregation and infectious diseases. Physiol. Rev. 2009; 89: 1105–1152.
- 14.Chen P.Y., Lin C.C., Chang Y.T. i wsp.: One O-linked sugar can affect the coil-to-β structural transition of the prion peptide. Proc. Natl Acad. Sci. USA 2002; 99: 12633–12638.
- 15.Westaway D., Jhamandas J.H.: The P’s and Q’s of cellular PrP-Aβ interactions. Prion 2012; 6: 359–363.
- 16.Liberski P.P., Surewicz W.K.: Molecular genetics of Gertsmann-Sträussler-Scheinker disease and Creutzfeldt-Jakob disease. Genetics 2013; 2: 117.
- 17.Cobb N.J., Surewicz W.K.: Prion diseases and their biochemical mechanisms. Biochemistry 2009; 48: 2574–2585.
- 18.Kraus A., Groveman B.R., Caughey B.: Prions and the potential transmissibility of protein misfolding diseases. Annu. Rev. Microbiol. 2013; 67: 543–564.
- 19.Fowler D.M., Kelly J.W.: Functional amyloidogenesis and cytotoxicity-insights into biology and pathology. PLoS Biol. 2012; 10: e1001459.
- 20.Prusiner S.B., McKinley M.P., Bowman K.A. i wsp.: Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983; 35: 349–358.
- 21.DeArmond S.J., McKinley M.P., Barry R.A. i wsp.: Identification of prion amyloid filaments in scrapie-infected brain. Cell 1985; 41: 221–235.
- 22.Smith J.F., Knowles T.P., Dobson C.M. i wsp.: Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 2006; 103: 15806–15811.
- 23.Barnhart M.M., Chapman M.R.: Curli biogenesis and function. Annu. Rev. Microbiol. 2006; 60: 131–147.
- 24.Sawyer E.B., Claessen D., Haas M. i wsp.: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 2011; 6: e18839.
- 25.Si K., Choi Y.B., White-Grindley E. i wsp.: Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010; 140: 421–435.
- 26.Prusiner S.B.: Some speculations about prions, amyloid, and Alzheimer’s disease. N. Engl. J. Med. 1984; 310: 661–663.
- 27.Di Fede G., Giaccone G., Tagliavini F.: Hereditary and sporadic beta-amyloidoses. Front. Biosci. (Landmark Ed.) 2013; 18: 1202–1226.
- 28.Kryndushkin D., Pripuzova N., Burnett B., Shewmaker F.: Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J. Biol. Chem. 2013; 288: 27100–27111.
- 29.Dobson C.M.: Structural biology: prying into prions. Nature 2005; 435: 747–749.
- 30.Ashe K.H., Aguzzi A.: Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion 2013; 7: 55–59.
- 31.Aguzzi A., Rajendran L.: The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 2009; 64: 783–790.
- 32.Schmidt C., Karch A., Korth C., Zerr I.: On the issue of transmissibility of Alzheimer disease: a critical review. Prion 2012; 6: 447–452.
- 33.Lansbury P.T. Jr, Caughey B.: The chemistry of scrapie infection: implications of the ‘ice 9’ metaphor. Chem. Biol. 1995; 2: 1–5.
- 34.Adres: http://en.wikipedia.org/wiki/Ice-nine.
- 35.Zhang B., Une Y., Fu X. i wsp.: Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease. Proc. Natl Acad. Sci. USA 2008; 105: 7263–7268.
- 36. Caughey B., Baron G.S.: Are cheetahs on the run from prion-like amyloidosis? Proc. Natl Acad. Sci. USA 2008; 105: 7113–7114.
- 37. Solomon A., Richey T., Murphy C.L. i wsp.: Amyloidogenic potential of foie gras. Proc. Natl Acad. Sci. USA 2007; 104: 10998–11001.
- 38. Brown P., Gibbs C.J. Jr, Rodgers-Johnson P. i wsp.: Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 1994; 35: 513–529.
- 39. Irwin D.J., Abrams J.Y., Schonberger L.B. i wsp.: Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 2013; 70: 462–468.
- 40. Hsiao K.K., Scott M., Foster D. i wsp.: Spontaneous neurodegeneration in transgenic mice with mutant prion protein. Science 1990; 250: 1587–1590.
- 41. Manson J.C., Jamieson E., Baybutt H. i wsp.: A single amino acid alteration (101L) introduced into murine PrP dramatically alters incubation time of transmissible spongiform encephalopathy. EMBO J. 1999; 18: 6855–6864.
- 42. Sano K., Satoh K., Atarashi R. i wsp.: Early detection of abnormal prion protein in genetic human prion diseases now possible using real-time QUIC assay. PLoS One 2013; 8: e54915.
- 43. Coste J.: An overview of the diagnostic tools. Transfus. Clin. Biol. 2013; 20: 412–415.
- 44. Jucker M., Walker L.C.: Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Ann. Neurol. 2011; 70: 532–540.
- 45. Wisniewski H.M., Merz P.A., Iqbal K.: Ultrastructure of paired helical filaments of Alzheimer’s neurofibrillary tangle. J. Neuropathol. Exp. Neurol. 1984; 43: 643–656.
- 46. Grundke-Iqbal I., Iqbal K., Tung Y.C. i wsp.: Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 1986; 83: 4913–4917.
- 47. Nussbaum J.M., Seward M.E., Bloom G.S.: Alzheimer disease: a tale of two prions. Prion 2013; 7: 14–19.
- 48. Benilova I., Karran E., De Strooper B.: The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 2012; 15: 349–357.
- 49. Hoshi M., Sato M., Matsumoto S. i wsp.: Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl Acad. Sci. USA 2003; 100: 6370–6375.
- 50. Ridley R.M., Baker H.F., Windle C.P., Cummings R.M.: Very long term studies of the seeding of β-amyloidosis in primates. J. Neural Transm. 2006; 113: 1243–1251.
- 51. Meyer-Luehmann M., Coomaraswamy J., Bolmont T. i wsp.: Exogenous induction of cerebral β-amyloidogenesis is governed by agent and host. Science 2006; 313: 1781–1784.
- 52. Kane M.D., Lipinski W.J., Callahan M.J. i wsp.: Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 2000; 20: 3606–3611.
- 53. Liberski P.P., Yanagihara R., Gibbs C.J. Jr, Gajdusek D.C.: Spread of Creutzfeldt-Jakob disease virus along visual pathways after intraocular inoculation. Arch. Virol. 1990; 111: 141–147.
- 54. Scott J.R., Fraser H.: Transport and targeting of scrapie infectivity and pathology in the optic nerve projections following intraocular infection. Prog. Clin. Biol. Res. 1989; 317: 645–652.
- 55. Scott J.R., Davies D., Fraser H.: Scrapie in the central nervous system: neuroanatomical spread of infection and Sinc control of pathogenesis. J. Gen. Virol. 1992; 73: 1637–1644.
- 56. Liberski P.P., Hainfellner J.A., Sikorska B., Budka H.: Prion protein (PrP) deposits in the tectum of experimental Gerstmann-Sträussler-Scheinker disease following intraocular inoculation. Folia Neuropathol. 2012; 50: 85–88.
- 57. Prado M.A., Baron G.: Seeding plaques in Alzheimer’s disease. J. Neurochem. 2012; 120: 641–643.
- 58. Flechsig E., Hegyi I., Enari M. i wsp.: Transmission of scrapie by steel-surface-bound prions. Mol. Med. 2001; 7: 679–684.
- 59. Zobeley E., Flechsig E., Cozzio A. i wsp.: Infectivity of scrapie prions bound to a stainless steel surface. Mol. Med. 1999; 5: 240–243.
- 60. Sigurdson C.J., Bartz J.C., Nilsson K.P.: Tracking protein aggregate interactions. Prion 2011; 5: 52–55.
- 61. Zou W.Q., Zhou X., Yuan J., Xiao X.: Insoluble cellular prion protein and its association with prion and Alzheimer diseases. Prion 2011; 5: 172–178.
- 62. Freir D.B., Nicoll A.J., Klyubin I. i wsp.: Interaction between prion protein and toxic amyloid β assemblies can be therapeutically targeted at multiple sites. Nat. Commun. 2011; 2: 336.
- 63. Resenberger U.K., Harmeier A., Woerner A.C. i wsp.: The cellular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J. 2011; 30: 2057–2070.
- 64. Bate C., Williams A.: Amyloid-β-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J. Biol. Chem. 2011; 286: 37955–37963.
- 65. Laurén J., Gimbel D.A., Nygaard H.B. i wsp.: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009; 457: 1128–1132.
- 66. Falsig J., Sonati T., Herrmann U.S. i wsp.: Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog. 2012; 8: e1002985.
- 67. Bertram L., McQueen M.B., Mullin K. i wsp.: Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat. Genet. 2007; 39: 17–23.
- 68. Tamgüney G., Giles K., Glidden D.V. i wsp.: Genes contributing to prion pathogenesis. J. Gen. Virol. 2008; 89: 1777–1788.
- 69. Kudo W., Lee H.P., Zou W.Q. i wsp.: Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death. Hum. Mol. Genet. 2012; 21: 1138–1144.
- 70. You H., Tsutsui S., Hameed S., Kannanayakal T.J. i wsp.: Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 2012; 109: 1737–1742.
- 71. Fluharty B.R., Biasini E., Stravalaci M. i wsp.: An N-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo. J. Biol. Chem. 2013; 288: 7857–7866.
- 72. Guillot-Sestier M.V., Sunyach C., Ferreira S.T. i wsp.: α-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death. J. Biol. Chem. 2012; 287: 5021–5032.
- 73. Sonati T., Reimann R.R., Falsig J. i wsp.: The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature 2013; 501: 102–106.
- 74. Calella A.M., Farinelli M., Nuvolone M. i wsp.: Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol. Med. 2010; 2: 306–314.
- 75. Whitehouse I.J., Miners J.S., Glennon E.B. i wsp.: Prion protein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-β levels and Braak stage. PLoS One 2013; 8: e59554.
- 76. Murray M.E., Graff-Radford N.R., Ross O.A. i wsp.: Neuropathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011; 10: 785–796.
- 77. Wilcock D.M., Griffin W.S.: Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J. Neuroinflammation 2013; 10: 84.
- 78. Peden A.H., Ironside J.W.: Molecular pathology in neurodegenerative diseases. Curr. Drug Targets 2012; 13: 1548–1559.
- 79. Bratosiewicz J., Liberski P.P., Kulczycki J., Kordek R.: Codon 129 polymorphism of the PRNP gene in normal Polish population and in Creutzfeldt-Jakob disease, and the search for new mutations in PRNP gene. Acta Neurobiol. Exp. (Wars.) 2001; 61: 151–156.
- 80. Parchi P., de Boni L., Saverioni D. i wsp.: Consensus classification of human prion disease histotypes allows reliable identification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012; 124: 517–529.
- 81. Parchi P., Saverioni D.: Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012; 50: 20–45.
- 82. Berr C., Richard F., Dufouil C. i wsp.: Polymorphism of the prion protein is associated with cognitive impairment in the elderly: the EVA study. Neurology 1998; 51: 734–737.
- 83. Golanska E., Hulas-Bigoszewska K., Rutkiewicz E. i wsp.: Polymorphisms within the prion (PrP) and prion-like protein (Doppel) genes in AD. Neurology 2004; 62: 313–315.
- 84. Labate A., Manna I., Gambardella A. i wsp.: Association between the M129V variant allele of PRNP gene and mild temporal lobe epilepsy in women. Neurosci. Lett. 2007; 421: 1–4.
- 85. Flirski M., Sieruta M., Golańska E. i wsp.: PRND 3’UTR polymorphism may be associated with behavioral disturbances in Alzheimer disease. Prion 2012; 6: 73–80.
- 86. Barcikowska M., Kwiecinski H., Liberski P.P. i wsp.: Creutzfeldt- Jakob disease with Alzheimer-type A beta-reactive amyloid plaques. Histopathology 1995; 26: 445–450.
- 87. Powers J.M., Liu Y., Hair L.S. i wsp.: Concomitant Creutzfeldt- Jakob and Alzheimer diseases. Acta Neuropathol. 1991; 83: 95–98.
- 88. Muramoto T., Kitamoto T., Koga H., Tateishi J.: The coexistence of Alzheimer’s disease and Creutzfeldt-Jakob disease in a patient with dementia of long duration. Acta Neuropathol. 1992; 84: 686–689.
- 89. Jayadev S., Nochlin D., Poorkaj P. i wsp.: Familial prion disease with Alzheimer disease-like tau pathology and clinical phenotype. Ann. Neurol. 2011; 69: 712–720.
- 90. Yoshida H., Terada S., Ishizu H. i wsp.: An autopsy case of Creutzfeldt-Jakob disease with a V180I mutation of the PrP gene and Alzheimer-type pathology. Neuropathology 2010; 30: 159–164.
- 91. Muñoz-Nieto M., Ramonet N., López-Gastón J.I. i wsp.: A novel mutation I215V in the PRNP gene associated with Creutzfeldt-Jakob and Alzheimer’s diseases in three patients with divergent clinical phenotypes. J. Neurol. 2013; 260: 77–84.
- 92. Head M.W., Lowrie S., Chohan G. i wsp.: Variably protease-sensitive prionopathy in a PRNP codon 129 heterozygous UK patient with co-existing tau, α synuclein and Aβ pathology. Acta Neuropathol. 2010; 120: 821–823.
- 93. Dickson D.W.: Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med. 2012; 2: a009258.
- 94. Jellinger K.A.: Neuropathology of sporadic Parkinson’s disease: evaluation and changes of concepts. Mov. Disord. 2012; 27: 8–30.
- 95. Sikorska B., Papierz W., Preusser M. i wsp.: Synucleinopathy with features of both multiple system atrophy and dementia with Lewy bodies. Neuropathol. Appl. Neurobiol. 2007; 33: 126–129.
- 96. Wider C., Ross O.A., Wszolek Z.K.: Genetics of Parkinson disease and essential tremor. Curr. Opin. Neurol. 2010; 23: 388–393.
- 97. Trinh J., Farrer M.: Advances in the genetics of Parkinson disease. Nat. Rev. Neurol. 2013; 9: 445–454.
- 98. George S., Rey N.L., Reichenbach N. i wsp.: α-Synuclein: the long distance runner. Brain Pathol. 2013; 23: 350–357.
- 99. Luk K.C., Song C., O’Brien P. i wsp.: Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 2009; 106: 20051–20056.
- 100. Kordower J.H., Chu Y., Hauser R.A. i wsp.: Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 2008; 14: 504–506.
- 101. Li J.Y., Englund E., Holton J.L. i wsp.: Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 2008; 14: 501–503.
- 102. Miller G.: Parkinson’s disease. Signs of disease in fetal transplants. Science 2008; 320: 167.
- 103. Hansen C., Angot E., Bergström A.L. i wsp.: α-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J. Clin. Invest. 2011; 121: 715–725.
- 104. Angot E., Steiner J.A., Lema Tomé C.M. i wsp.: Alpha-synuclein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 2012; 7: e39465.
- 105. Kordower J.H., Dodiya H.B., Kordower A.M. i wsp.: Transfer of host-derived α synuclein to grafted dopaminergic neurons in rat. Neurobiol. Dis. 2011; 43: 552–557.
- 106. Luk K.C., Kehm V.M., Zhang B. i wsp.: Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 2012; 209: 975–986.
- 107. Sacino A.N., Thomas M.A., Ceballos-Diaz C. i wsp.: Conformational templating of α-synuclein aggregates in neuronal-glial cultures. Mol. Neurodegener. 2013; 8: 17.
- 108. Sacino A.N., Giasson B.I.: Does a prion-like mechanism play a major role in the apparent spread of α-synuclein pathology? Alzheimers Res. Ther. 2012; 4: 48.
- 109. Braak H., Rüb U., Gai W.P., Del Tredici K.: Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. 2003; 110: 517–536.
- 110. Masliah E., Rockenstein E., Inglis C. i wsp.: Prion infection promotes extensive accumulation of α-synuclein in aged human α-synuclein transgenic mice. Prion 2012; 6: 184–190.
- 111. Millar J.K., Wilson-Annan J.C., Anderson S. i wsp.: Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 2000; 9: 1415–1423.
- 112. Korth C.: Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012; 6: 134–141.
- 113. Sikorska B., Liberski P.P., Brown P.: Neuronal autophagy and aggresomes constitute a consistent part of neurodegeneration in experimental scrapie. Folia Neuropathol. 2007; 45: 170–178.
- 114. Silva J.L., Rangel L.P., Costa D.C.F. i wsp.: Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci. Rep. 2013; 33: e00054.
- 115. Bell S., Klein C., Müller L. i wsp.: p53 contains large unstructured regions in its native state. J. Mol. Biol. 2002; 322: 917–927.
- 116. McPherson A., Shlichta P.: Heterogeneous and epitaxial nucleation of protein crystals on mineral surfaces. Science 1988; 239: 385–387.
- 117. Vincent B., Sunyach C., Orzechowski H.D. i wsp.: p53-Dependent transcriptional control of cellular prion by presenilins. J. Neurosci. 2009; 29: 6752–6760.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-e1c049df-2b15-4f2f-8a76-6a76ad150652