PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 13 | 3 | 230–239
Article title

Amyloidy i prionoidy – czy jest już czas, żeby się obawiać?

Content
Title variants
EN
Amyloids and prionoids – is there a time to be afraid?
Languages of publication
PL
Abstracts
EN
The new era has come to microbiology as we have realized that the unconventional viruses of kuru, Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker syndrome (GSS), scrapie, and bovine spongiform encephalopathy (BSE) are infectious amyloid proteins and that these transmissible spongiform dementias are brain amyloidoses. This quotation from a Nobel laureate, D. Carleton Gajdusek, illustrates the best the content of this paper. Amyloid is a generic term, which embraces the fibrillary cross-β-sheet quaternary structure of any protein. All amyloids, irrespective of their amino acid sequences, are formed through nucleation/polymerization reactions in which oligomeric structures (small aggregates) composed of a limited number of a given protein moiety (a seed) nucleates other moieties. As a result, the β-pleated secondary structure predominates. Such proteins are called “prionoids” as opposed to “real” prions, which are infectious, or transmissible, in a microbiological sense; they spread between individuals and cause macro-epidemics, such as kuru, BSE and iatrogenic CJD. In this review, prions and prionoids, and their inter-relatedness, will be discussed.
PL
Nadeszła nowa era mikrobiologii, kiedy zrozumieliśmy, że niekonwencjonalne wirusy kuru, choroby Creutzfeldta--Jakoba (CJD) i zespołu [obecnie „choroby”] Gerstmanna-Sträusslera-Scheinkera (GSS), scrapie, encefalopatii gąbczastej bydła (BSE) są infekcyjnymi białkami amyloidowymi i że pasażowalne encefalopatie gąbczaste są amyloidozami mózgu. Ten cytat z wypowiedzi laureata Nagrody Nobla D. Carletona Gajduska znakomicie ilustruje całość zagadnienia. Amyloid to nazwa ogólna określająca włókienkową czwartorzędową strukturę białka. Wszystkie amyloidy, niezależnie od sekwencji aminokwasów tworzących je białek, tworzą się w wyniku reakcji nukleacji/polimeryzacji, w której agregaty (oligomery), składające się z niewielkiej liczby cząsteczek białka (jądro, seed), nukleują cząsteczki białka prekursorowego, co prowadzi do zmiany konformacji przestrzennej w kierunku harmonijki-β. Choroby wywołane przez takie białka nazywa się prionoidami. „Prawdziwe” priony różnią się zasadniczo od wszystkich innych prionoidów − priony są zakaźnie w sensie mikrobiologicznym, szerzą się między osobnikami, wywołując makroepidemie, takie jak kuru, vCJD, BSE i jatrogenne przypadki CJD. W niniejszym artykule zostaną omówione podstawowe prionoidy − choroby Alzheimera i Parkinsona – oraz relacja łącząca je z chorobami prionowymi.
Discipline
Year
Volume
13
Issue
3
Pages
230–239
Physical description
References
  • 1.Gajdusek D.C.: Spontaneous generation of infectious nucleat­ing amyloids in the transmissible and nontransmissible cere­bral amyloidoses. Mol. Neurobiol. 1994; 8: 1–13.
  • 2.Liberski P.P., Sikorska B., Lindenbaum S. i wsp.: Kuru: genes, cannibals and neuropathology. J. Neuropathol. Exp. Neurol. 2012; 71: 92–103.
  • 3.Liberski P.P., Sikorska B., Brown P.: Kuru: the first prion dis­ease. Adv. Exp. Med. Biol. 2012; 724: 143–153.
  • 4.Liberski P.P.: Historical overview of prion diseases: a view from afar. Folia Neuropathol. 2012; 50: 1–12.
  • 5.Sikorska B., Liberski P.P.: Human prion diseases: from kuru to variant Creutzfeldt-Jakob disease. Subcell. Biochem. 2012; 65: 457–496.
  • 6.Sikorska B., Knight R., Ironside J.W., Liberski P.P.: Creutzfeldt- Jakob disease. Adv. Exp. Med. Biol. 2012; 724: 76–90.
  • 7.Prusiner S.B.: Cell biology. A unifying role for prions in neu­rodegenerative diseases. Science 2012; 336: 1511–1503.
  • 8.Aguzzi A., O’Connor T.: Protein aggregation diseases: patho­genicity and therapeutic perspectives. Nat. Rev. Drug Discov. 2010; 9: 237–248.
  • 9.Prusiner S.B.: Scrapie prions, brain amyloid, and senile demen­tia. Curr. Top. Cell. Regul. 1985; 26: 79–95.
  • 10.Basler K., Oesch B., Scott M. i wsp.: Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 1986; 46: 417–428.
  • 11.Chesebro B., Race R., Wehrly K. i wsp.: Identification of scra­pie prion protein-specific mRNA in scrapie-infected and unin­fected brain. Nature 1985; 315: 331–333.
  • 12.Locht C., Chesebro B., Race R., Keith J.M.: Molecular cloning and complete sequence of prion protein cDNA from mouse brain infected with the scrapie agent. Proc. Natl Acad. Sci. USA 1986; 83: 6372–6366.
  • 13.Aguzzi A., Calella A.M.: Prions: protein aggregation and infec­tious diseases. Physiol. Rev. 2009; 89: 1105–1152.
  • 14.Chen P.Y., Lin C.C., Chang Y.T. i wsp.: One O-linked sugar can affect the coil-to-β structural transition of the prion pep­tide. Proc. Natl Acad. Sci. USA 2002; 99: 12633–12638.
  • 15.Westaway D., Jhamandas J.H.: The P’s and Q’s of cellular PrP-Aβ interactions. Prion 2012; 6: 359–363.
  • 16.Liberski P.P., Surewicz W.K.: Molecular genetics of Gerts­mann-Sträussler-Scheinker disease and Creutzfeldt-Jakob dis­ease. Genetics 2013; 2: 117.
  • 17.Cobb N.J., Surewicz W.K.: Prion diseases and their biochem­ical mechanisms. Biochemistry 2009; 48: 2574–2585.
  • 18.Kraus A., Groveman B.R., Caughey B.: Prions and the poten­tial transmissibility of protein misfolding diseases. Annu. Rev. Microbiol. 2013; 67: 543–564.
  • 19.Fowler D.M., Kelly J.W.: Functional amyloidogenesis and cytotoxicity-insights into biology and pathology. PLoS Biol. 2012; 10: e1001459.
  • 20.Prusiner S.B., McKinley M.P., Bowman K.A. i wsp.: Scrapie prions aggregate to form amyloid-like birefringent rods. Cell 1983; 35: 349–358.
  • 21.DeArmond S.J., McKinley M.P., Barry R.A. i wsp.: Identifica­tion of prion amyloid filaments in scrapie-infected brain. Cell 1985; 41: 221–235.
  • 22.Smith J.F., Knowles T.P., Dobson C.M. i wsp.: Characteriza­tion of the nanoscale properties of individual amyloid fibrils. Proc. Natl Acad. Sci. USA 2006; 103: 15806–15811.
  • 23.Barnhart M.M., Chapman M.R.: Curli biogenesis and func­tion. Annu. Rev. Microbiol. 2006; 60: 131–147.
  • 24.Sawyer E.B., Claessen D., Haas M. i wsp.: The assembly of individual chaplin peptides from Streptomyces coelicolor into functional amyloid fibrils. PLoS One 2011; 6: e18839.
  • 25.Si K., Choi Y.B., White-Grindley E. i wsp.: Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010; 140: 421–435.
  • 26.Prusiner S.B.: Some speculations about prions, amyloid, and Alzheimer’s disease. N. Engl. J. Med. 1984; 310: 661–663.
  • 27.Di Fede G., Giaccone G., Tagliavini F.: Hereditary and sporad­ic beta-amyloidoses. Front. Biosci. (Landmark Ed.) 2013; 18: 1202–1226.
  • 28.Kryndushkin D., Pripuzova N., Burnett B., Shewmaker F.: Non-targeted identification of prions and amyloid-forming proteins from yeast and mammalian cells. J. Biol. Chem. 2013; 288: 27100–27111.
  • 29.Dobson C.M.: Structural biology: prying into prions. Nature 2005; 435: 747–749.
  • 30.Ashe K.H., Aguzzi A.: Prions, prionoids and pathogenic pro­teins in Alzheimer disease. Prion 2013; 7: 55–59.
  • 31.Aguzzi A., Rajendran L.: The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 2009; 64: 783–790.
  • 32.Schmidt C., Karch A., Korth C., Zerr I.: On the issue of trans­missibility of Alzheimer disease: a critical review. Prion 2012; 6: 447–452.
  • 33.Lansbury P.T. Jr, Caughey B.: The chemistry of scrapie infection: implications of the ‘ice 9’ metaphor. Chem. Biol. 1995; 2: 1–5.
  • 34.Adres: http://en.wikipedia.org/wiki/Ice-nine.
  • 35.Zhang B., Une Y., Fu X. i wsp.: Fecal transmission of AA amyloidosis in the cheetah contributes to high incidence of disease. Proc. Natl Acad. Sci. USA 2008; 105: 7263–7268.
  • 36. Caughey B., Baron G.S.: Are cheetahs on the run from pri­on-like amyloidosis? Proc. Natl Acad. Sci. USA 2008; 105: 7113–7114.
  • 37. Solomon A., Richey T., Murphy C.L. i wsp.: Amyloidogenic potential of foie gras. Proc. Natl Acad. Sci. USA 2007; 104: 10998–11001.
  • 38. Brown P., Gibbs C.J. Jr, Rodgers-Johnson P. i wsp.: Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 1994; 35: 513–529.
  • 39. Irwin D.J., Abrams J.Y., Schonberger L.B. i wsp.: Evaluation of potential infectivity of Alzheimer and Parkinson disease pro­teins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 2013; 70: 462–468.
  • 40. Hsiao K.K., Scott M., Foster D. i wsp.: Spontaneous neuro­degeneration in transgenic mice with mutant prion protein. Science 1990; 250: 1587–1590.
  • 41. Manson J.C., Jamieson E., Baybutt H. i wsp.: A single amino acid alteration (101L) introduced into murine PrP dramatical­ly alters incubation time of transmissible spongiform encepha­lopathy. EMBO J. 1999; 18: 6855–6864.
  • 42. Sano K., Satoh K., Atarashi R. i wsp.: Early detection of abnor­mal prion protein in genetic human prion diseases now possi­ble using real-time QUIC assay. PLoS One 2013; 8: e54915.
  • 43. Coste J.: An overview of the diagnostic tools. Transfus. Clin. Biol. 2013; 20: 412–415.
  • 44. Jucker M., Walker L.C.: Pathogenic protein seeding in Alzheim­er disease and other neurodegenerative disorders. Ann. Neurol. 2011; 70: 532–540.
  • 45. Wisniewski H.M., Merz P.A., Iqbal K.: Ultrastructure of paired helical filaments of Alzheimer’s neurofibrillary tangle. J. Neu­ropathol. Exp. Neurol. 1984; 43: 643–656.
  • 46. Grundke-Iqbal I., Iqbal K., Tung Y.C. i wsp.: Abnormal phos­phorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 1986; 83: 4913–4917.
  • 47. Nussbaum J.M., Seward M.E., Bloom G.S.: Alzheimer dis­ease: a tale of two prions. Prion 2013; 7: 14–19.
  • 48. Benilova I., Karran E., De Strooper B.: The toxic Aβ oligomer and Alzheimer’s disease: an emperor in need of clothes. Nat. Neurosci. 2012; 15: 349–357.
  • 49. Hoshi M., Sato M., Matsumoto S. i wsp.: Spherical aggre­gates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc. Natl Acad. Sci. USA 2003; 100: 6370–6375.
  • 50. Ridley R.M., Baker H.F., Windle C.P., Cummings R.M.: Very long term studies of the seeding of β-amyloidosis in primates. J. Neural Transm. 2006; 113: 1243–1251.
  • 51. Meyer-Luehmann M., Coomaraswamy J., Bolmont T. i wsp.: Exogenous induction of cerebral β-amyloidogenesis is gov­erned by agent and host. Science 2006; 313: 1781–1784.
  • 52. Kane M.D., Lipinski W.J., Callahan M.J. i wsp.: Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in β-amyloid precursor protein-transgenic mice. J. Neurosci. 2000; 20: 3606–3611.
  • 53. Liberski P.P., Yanagihara R., Gibbs C.J. Jr, Gajdusek D.C.: Spread of Creutzfeldt-Jakob disease virus along visual path­ways after intraocular inoculation. Arch. Virol. 1990; 111: 141–147.
  • 54. Scott J.R., Fraser H.: Transport and targeting of scrapie infectivity and pathology in the optic nerve projections fol­lowing intraocular infection. Prog. Clin. Biol. Res. 1989; 317: 645–652.
  • 55. Scott J.R., Davies D., Fraser H.: Scrapie in the central ner­vous system: neuroanatomical spread of infection and Sinc control of pathogenesis. J. Gen. Virol. 1992; 73: 1637–1644.
  • 56. Liberski P.P., Hainfellner J.A., Sikorska B., Budka H.: Prion protein (PrP) deposits in the tectum of experimental Gerst­mann-Sträussler-Scheinker disease following intraocular inoc­ulation. Folia Neuropathol. 2012; 50: 85–88.
  • 57. Prado M.A., Baron G.: Seeding plaques in Alzheimer’s dis­ease. J. Neurochem. 2012; 120: 641–643.
  • 58. Flechsig E., Hegyi I., Enari M. i wsp.: Transmission of scrapie by steel-surface-bound prions. Mol. Med. 2001; 7: 679–684.
  • 59. Zobeley E., Flechsig E., Cozzio A. i wsp.: Infectivity of scra­pie prions bound to a stainless steel surface. Mol. Med. 1999; 5: 240–243.
  • 60. Sigurdson C.J., Bartz J.C., Nilsson K.P.: Tracking protein aggregate interactions. Prion 2011; 5: 52–55.
  • 61. Zou W.Q., Zhou X., Yuan J., Xiao X.: Insoluble cellular prion protein and its association with prion and Alzheimer diseas­es. Prion 2011; 5: 172–178.
  • 62. Freir D.B., Nicoll A.J., Klyubin I. i wsp.: Interaction between prion protein and toxic amyloid β assemblies can be therapeu­tically targeted at multiple sites. Nat. Commun. 2011; 2: 336.
  • 63. Resenberger U.K., Harmeier A., Woerner A.C. i wsp.: The cel­lular prion protein mediates neurotoxic signalling of β-sheet-rich conformers independent of prion replication. EMBO J. 2011; 30: 2057–2070.
  • 64. Bate C., Williams A.: Amyloid-β-induced synapse damage is mediated via cross-linkage of cellular prion proteins. J. Biol. Chem. 2011; 286: 37955–37963.
  • 65. Laurén J., Gimbel D.A., Nygaard H.B. i wsp.: Cellular prion protein mediates impairment of synaptic plasticity by amyloid-β oligomers. Nature 2009; 457: 1128–1132.
  • 66. Falsig J., Sonati T., Herrmann U.S. i wsp.: Prion pathogene­sis is faithfully reproduced in cerebellar organotypic slice cul­tures. PLoS Pathog. 2012; 8: e1002985.
  • 67. Bertram L., McQueen M.B., Mullin K. i wsp.: Systematic meta-analyses of Alzheimer disease genetic association stud­ies: the AlzGene database. Nat. Genet. 2007; 39: 17–23.
  • 68. Tamgüney G., Giles K., Glidden D.V. i wsp.: Genes contribut­ing to prion pathogenesis. J. Gen. Virol. 2008; 89: 1777–1788.
  • 69. Kudo W., Lee H.P., Zou W.Q. i wsp.: Cellular prion protein is essential for oligomeric amyloid-β-induced neuronal cell death. Hum. Mol. Genet. 2012; 21: 1138–1144.
  • 70. You H., Tsutsui S., Hameed S., Kannanayakal T.J. i wsp.: Aβ neurotoxicity depends on interactions between copper ions, prion protein, and N-methyl-D-aspartate receptors. Proc. Natl Acad. Sci. USA 2012; 109: 1737–1742.
  • 71. Fluharty B.R., Biasini E., Stravalaci M. i wsp.: An N-terminal fragment of the prion protein binds to amyloid-β oligomers and inhibits their neurotoxicity in vivo. J. Biol. Chem. 2013; 288: 7857–7866.
  • 72. Guillot-Sestier M.V., Sunyach C., Ferreira S.T. i wsp.: α-Secretase-derived fragment of cellular prion, N1, protects against monomeric and oligomeric amyloid β (Aβ)-associated cell death. J. Biol. Chem. 2012; 287: 5021–5032.
  • 73. Sonati T., Reimann R.R., Falsig J. i wsp.: The toxicity of anti­prion antibodies is mediated by the flexible tail of the prion protein. Nature 2013; 501: 102–106.
  • 74. Calella A.M., Farinelli M., Nuvolone M. i wsp.: Prion protein and Aβ-related synaptic toxicity impairment. EMBO Mol. Med. 2010; 2: 306–314.
  • 75. Whitehouse I.J., Miners J.S., Glennon E.B. i wsp.: Prion pro­tein is decreased in Alzheimer’s brain and inversely correlates with BACE1 activity, amyloid-β levels and Braak stage. PLoS One 2013; 8: e59554.
  • 76. Murray M.E., Graff-Radford N.R., Ross O.A. i wsp.: Neuro­pathologically defined subtypes of Alzheimer’s disease with distinct clinical characteristics: a retrospective study. Lancet Neurol. 2011; 10: 785–796.
  • 77. Wilcock D.M., Griffin W.S.: Down’s syndrome, neuroinflam­mation, and Alzheimer neuropathogenesis. J. Neuroinflam­mation 2013; 10: 84.
  • 78. Peden A.H., Ironside J.W.: Molecular pathology in neurode­generative diseases. Curr. Drug Targets 2012; 13: 1548–1559.
  • 79. Bratosiewicz J., Liberski P.P., Kulczycki J., Kordek R.: Codon 129 polymorphism of the PRNP gene in normal Polish popu­lation and in Creutzfeldt-Jakob disease, and the search for new mutations in PRNP gene. Acta Neurobiol. Exp. (Wars.) 2001; 61: 151–156.
  • 80. Parchi P., de Boni L., Saverioni D. i wsp.: Consensus classifi­cation of human prion disease histotypes allows reliable iden­tification of molecular subtypes: an inter-rater study among surveillance centres in Europe and USA. Acta Neuropathol. 2012; 124: 517–529.
  • 81. Parchi P., Saverioni D.: Molecular pathology, classification, and diagnosis of sporadic human prion disease variants. Folia Neuropathol. 2012; 50: 20–45.
  • 82. Berr C., Richard F., Dufouil C. i wsp.: Polymorphism of the prion protein is associated with cognitive impairment in the elderly: the EVA study. Neurology 1998; 51: 734–737.
  • 83. Golanska E., Hulas-Bigoszewska K., Rutkiewicz E. i wsp.: Polymorphisms within the prion (PrP) and prion-like protein (Doppel) genes in AD. Neurology 2004; 62: 313–315.
  • 84. Labate A., Manna I., Gambardella A. i wsp.: Association between the M129V variant allele of PRNP gene and mild tem­poral lobe epilepsy in women. Neurosci. Lett. 2007; 421: 1–4.
  • 85. Flirski M., Sieruta M., Golańska E. i wsp.: PRND 3’UTR polymorphism may be associated with behavioral disturbanc­es in Alzheimer disease. Prion 2012; 6: 73–80.
  • 86. Barcikowska M., Kwiecinski H., Liberski P.P. i wsp.: Creutzfeldt- Jakob disease with Alzheimer-type A beta-reactive amyloid plaques. Histopathology 1995; 26: 445–450.
  • 87. Powers J.M., Liu Y., Hair L.S. i wsp.: Concomitant Creutzfeldt- Jakob and Alzheimer diseases. Acta Neuropathol. 1991; 83: 95–98.
  • 88. Muramoto T., Kitamoto T., Koga H., Tateishi J.: The coexis­tence of Alzheimer’s disease and Creutzfeldt-Jakob disease in a patient with dementia of long duration. Acta Neuropathol. 1992; 84: 686–689.
  • 89. Jayadev S., Nochlin D., Poorkaj P. i wsp.: Familial prion dis­ease with Alzheimer disease-like tau pathology and clinical phenotype. Ann. Neurol. 2011; 69: 712–720.
  • 90. Yoshida H., Terada S., Ishizu H. i wsp.: An autopsy case of Creutzfeldt-Jakob disease with a V180I mutation of the PrP gene and Alzheimer-type pathology. Neuropathology 2010; 30: 159–164.
  • 91. Muñoz-Nieto M., Ramonet N., López-Gastón J.I. i wsp.: A novel mutation I215V in the PRNP gene associated with Creutzfeldt-Jakob and Alzheimer’s diseases in three patients with divergent clinical phenotypes. J. Neurol. 2013; 260: 77–84.
  • 92. Head M.W., Lowrie S., Chohan G. i wsp.: Variably protease-sensitive prionopathy in a PRNP codon 129 heterozygous UK patient with co-existing tau, α synuclein and Aβ pathology. Acta Neuropathol. 2010; 120: 821–823.
  • 93. Dickson D.W.: Parkinson’s disease and parkinsonism: neu­ropathology. Cold Spring Harb. Perspect. Med. 2012; 2: a009258.
  • 94. Jellinger K.A.: Neuropathology of sporadic Parkinson’s dis­ease: evaluation and changes of concepts. Mov. Disord. 2012; 27: 8–30.
  • 95. Sikorska B., Papierz W., Preusser M. i wsp.: Synucleinopathy with features of both multiple system atrophy and dementia with Lewy bodies. Neuropathol. Appl. Neurobiol. 2007; 33: 126–129.
  • 96. Wider C., Ross O.A., Wszolek Z.K.: Genetics of Parkinson disease and essential tremor. Curr. Opin. Neurol. 2010; 23: 388–393.
  • 97. Trinh J., Farrer M.: Advances in the genetics of Parkinson dis­ease. Nat. Rev. Neurol. 2013; 9: 445–454.
  • 98. George S., Rey N.L., Reichenbach N. i wsp.: α-Synuclein: the long distance runner. Brain Pathol. 2013; 23: 350–357.
  • 99. Luk K.C., Song C., O’Brien P. i wsp.: Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl Acad. Sci. USA 2009; 106: 20051–20056.
  • 100. Kordower J.H., Chu Y., Hauser R.A. i wsp.: Lewy body-like pathology in long-term embryonic nigral transplants in Par­kinson’s disease. Nat. Med. 2008; 14: 504–506.
  • 101. Li J.Y., Englund E., Holton J.L. i wsp.: Lewy bodies in graft­ed neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 2008; 14: 501–503.
  • 102. Miller G.: Parkinson’s disease. Signs of disease in fetal trans­plants. Science 2008; 320: 167.
  • 103. Hansen C., Angot E., Bergström A.L. i wsp.: α-Synuclein propagates from mouse brain to grafted dopaminergic neu­rons and seeds aggregation in cultured human cells. J. Clin. Invest. 2011; 121: 715–725.
  • 104. Angot E., Steiner J.A., Lema Tomé C.M. i wsp.: Alpha-synu­clein cell-to-cell transfer and seeding in grafted dopaminergic neurons in vivo. PLoS One 2012; 7: e39465.
  • 105. Kordower J.H., Dodiya H.B., Kordower A.M. i wsp.: Trans­fer of host-derived α synuclein to grafted dopaminergic neu­rons in rat. Neurobiol. Dis. 2011; 43: 552–557.
  • 106. Luk K.C., Kehm V.M., Zhang B. i wsp.: Intracerebral inocula­tion of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med. 2012; 209: 975–986.
  • 107. Sacino A.N., Thomas M.A., Ceballos-Diaz C. i wsp.: Con­formational templating of α-synuclein aggregates in neuro­nal-glial cultures. Mol. Neurodegener. 2013; 8: 17.
  • 108. Sacino A.N., Giasson B.I.: Does a prion-like mechanism play a major role in the apparent spread of α-synuclein pathology? Alzheimers Res. Ther. 2012; 4: 48.
  • 109. Braak H., Rüb U., Gai W.P., Del Tredici K.: Idiopathic Parkin­son’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown patho­gen. J. Neural Transm. 2003; 110: 517–536.
  • 110. Masliah E., Rockenstein E., Inglis C. i wsp.: Prion infection promotes extensive accumulation of α-synuclein in aged human α-synuclein transgenic mice. Prion 2012; 6: 184–190.
  • 111. Millar J.K., Wilson-Annan J.C., Anderson S. i wsp.: Disrup­tion of two novel genes by a translocation co-segregating with schizophrenia. Hum. Mol. Genet. 2000; 9: 1415–1423.
  • 112. Korth C.: Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012; 6: 134–141.
  • 113. Sikorska B., Liberski P.P., Brown P.: Neuronal autophagy and aggresomes constitute a consistent part of neurodegeneration in experimental scrapie. Folia Neuropathol. 2007; 45: 170–178.
  • 114. Silva J.L., Rangel L.P., Costa D.C.F. i wsp.: Expanding the prion concept to cancer biology: dominant-negative effect of aggregates of mutant p53 tumour suppressor. Biosci. Rep. 2013; 33: e00054.
  • 115. Bell S., Klein C., Müller L. i wsp.: p53 contains large unstructured regions in its native state. J. Mol. Biol. 2002; 322: 917–927.
  • 116. McPherson A., Shlichta P.: Heterogeneous and epitaxial nucle­ation of protein crystals on mineral surfaces. Science 1988; 239: 385–387.
  • 117. Vincent B., Sunyach C., Orzechowski H.D. i wsp.: p53-Depen­dent transcriptional control of cellular prion by presenilins. J. Neurosci. 2009; 29: 6752–6760.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-e1c049df-2b15-4f2f-8a76-6a76ad150652
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.