Preferences help
enabled [disable] Abstract
Number of results
2014 | 19 | 145-154
Article title


Title variants
Languages of publication
Chitosan (Chi) is an extremely promising natural biopolymer with remarkable potency for the development of drug and vaccine delivery nanosystems. Various Chi derivatives are used to form nanoparticles (NPs) with unique properties. However, the efficacy of the therapy delivered by Chi NPs depends significantly on NP biodistribution in the body. The aim of this study was the analysis of biodistribution of NPs formed by succinoyl Chi and loaded with doxorubicin (SCNPDOX). We compared the distribution of free DOX and SCNP-DOX after intravenous (i.v.) and intranasal (i.n.) delivery into tumour-bearing mice. Distribution of DOX and SCNP-DOX was comparable after i.v. injection while they differed significantly after i.n. instillation.
  • 1. Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M.; (2004). Recent advances on chitosan-based microand nanoparticles in drug delivery. J Control Release, 100, 5–28, DOI: 10.1016/j.jconrel.2004.08.010.
  • 2. Amidi M., Romeijn S.G., Borchard G., Junginger H.E., Hennink W.E., Jiskoot W.; (2006). Preparation and characterisation of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release, 111, 107–116, DOI: 10.1016/j.jconrel.2005.11.014.
  • 3. Balabushevich N.G., Pechenkin M., Shibanova E.D., Volodkin D.V., Mikhalchik E.V.; (2013). Multifunctional polyelectrolyte microparticles for oral insulin delivery. Macromol Biosci., 13, 1379- 1388, DOI: 10.1002/mabi.201300207.
  • 4. Sáenz L., Neira-Carrillo A., Paredes R., Cortés M., Bucarey S., Arias J.L.; (2009). Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. Int J Pharm., 369, 64–71, DOI: 10.1016/j.ijpharm.2008.10.033.
  • 5. Liang N., Sun S., Li X., Piao H., Piao H., Cui F., Fang L.;(2012).α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterisation and in vitro/in vivo evaluations. Int J Pharm., 423, 480–488, DOI: 10.1016/j.ijpharm.2011.12.004.
  • 6. Cho Y., Kim J.T., Park H.J.; (2012). Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr Polym., 88, 1087–1092, DOI: 10.1016/j.carbpol.2012.01.074.
  • 7. Ju Y., Jang J., Woo Y., Chung H., Park R., Chan I., Yong J.; (2003). Biodistribution and anti-tumour efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release, 91, 135–145, DOI: 10.1016/S0168-3659(03)00231-1.
  • 8. He C., Hu Y., Yin L., Tang C., Yin C.; (2010). Biomaterials effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31, 3657–3666, DOI: 10.1016/j.biomaterials.2010.01.065.
  • 9. Alhareth K., Vauthier C., Gueutin C., Ponchel G., Moussa F.; (2012). HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J Chromatogr B, 887-888, 128–132, DOI: 10.1016/j.jchromb.2012.01.025.
  • 10. Zhang C., Qu G., Sun Y., Wu X., Yao Z., Guo Q., Zhou H.; (2008). Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulphate chitosan micelles loaded with paclitaxel. Biomaterials, 29, 1233–1241, DOI: 10.1016/j.biomaterials.2007.11.029.
  • 11. Pardeshi C.V., Belgamwar V. S.; (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv., 10, 957–972, DOI: 10.1517/17425247.2013.790887.
  • 12. Md S., Khan R.A., Mustafa G., Chuttani K., Baboota S., Sahni J.K., Ali J.; (2012). Bromocriptine-loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur J Pharm Sci., 48, 393–405, DOI: 10.1016/j.ejps.2012.12.007.
  • 13. Zubareva A., Ily’ina A., Prokhorov A., Kurek D., Efremov M., Varlamov V., Svirshchevskaya Е.; (2013). Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Molecules, 18, 7848–64, DOI:10.3390/molecules18077848.
  • 14. A. V. Il’ina, A. A. Zubareva, D. V. Kurek, A. N. Levov, and V. P. Varlamov ; (2012). Nanoparticles based on succinyl chitosan with doxorubicin: preparation and properties. Nanotechnology in Russia, 7, 85-92, DOI: 10.1134/S1995078012010107.
  • 15. Svirshchevskaya E.V., Mariotti J., Wright M.H., Viskova N.Y., Telford W., Fowler D.H., Varticovski L.; (2008). Rapamycin delays growth of Wnt-1 tumours in spite of suppression of host immunity. BMC cancer, 8, 176, DOI:10.1186/1471-2407-8-177.
  • 16. Long L.W., Times C., Gabizon A., Shioia R., Papahadjopoulos D.; (1989). Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst., 81, 1484–1488, DOI:10.1093/jnci/81.19.1484.
  • 17. Bhattarai N., Gunn J., Zhang M.; (2010). Chitosan-based hydrogels for controlled, localised drug delivery. Adv Drug Deliv Rev., 62, 83–99, DOI: 10.1016/j.addr.2009.07.019.
  • 18. Zhang L., Zhao Z.-L., Wei X.-H., Liu J.-H.; (2013). Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles. Int. J Nanomedicine., 8, 601–10, DOI: 10.2147/IJN.S39685.
  • 19. Zubareva A.A., Kurek D.V., Sizova S.V., Svirshchevskaya E.V., Varlamov V.P.; (2012). Characterization of physicochemical parameters. Nanotechnology in Russia, 7, 428–433.
  • 20. Brazhe A.R., Brazhe N., Maksimov G.V, Ignatyev P.S., Rubin A.B., Mosekilde E., Sosnovtseva O.V.; (2008). Phase-modulation laser interference microscopy: an advance in cell imaging and dynamics study. J Biomed Opt., 13, 034004, DOI:10.1117/1.2937213.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.