Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 19 | 145-154

Article title

BIODISTRIBUTION OF DOXORUBICIN-LOADED SUCCINOYL CHITOSAN NANOPARTICLES IN MICE INJECTED VIA INTRAVENOUS OR INTRANASAL ROUTES

Content

Title variants

Languages of publication

EN EN

Abstracts

EN
Chitosan (Chi) is an extremely promising natural biopolymer with remarkable potency for the development of drug and vaccine delivery nanosystems. Various Chi derivatives are used to form nanoparticles (NPs) with unique properties. However, the efficacy of the therapy delivered by Chi NPs depends significantly on NP biodistribution in the body. The aim of this study was the analysis of biodistribution of NPs formed by succinoyl Chi and loaded with doxorubicin (SCNPDOX). We compared the distribution of free DOX and SCNP-DOX after intravenous (i.v.) and intranasal (i.n.) delivery into tumour-bearing mice. Distribution of DOX and SCNP-DOX was comparable after i.v. injection while they differed significantly after i.n. instillation.

Contributors

  • Centre «Bioengineering» RAS
  • Centre «Bioengineering» RAS
  • Centre «Bioengineering» RAS
  • Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry RAS

References

  • 1. Agnihotri S.A., Mallikarjuna N.N., Aminabhavi T.M.; (2004). Recent advances on chitosan-based microand nanoparticles in drug delivery. J Control Release, 100, 5–28, DOI: 10.1016/j.jconrel.2004.08.010.
  • 2. Amidi M., Romeijn S.G., Borchard G., Junginger H.E., Hennink W.E., Jiskoot W.; (2006). Preparation and characterisation of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Control Release, 111, 107–116, DOI: 10.1016/j.jconrel.2005.11.014.
  • 3. Balabushevich N.G., Pechenkin M., Shibanova E.D., Volodkin D.V., Mikhalchik E.V.; (2013). Multifunctional polyelectrolyte microparticles for oral insulin delivery. Macromol Biosci., 13, 1379- 1388, DOI: 10.1002/mabi.201300207.
  • 4. Sáenz L., Neira-Carrillo A., Paredes R., Cortés M., Bucarey S., Arias J.L.; (2009). Chitosan formulations improve the immunogenicity of a GnRH-I peptide-based vaccine. Int J Pharm., 369, 64–71, DOI: 10.1016/j.ijpharm.2008.10.033.
  • 5. Liang N., Sun S., Li X., Piao H., Piao H., Cui F., Fang L.;(2012).α-Tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterisation and in vitro/in vivo evaluations. Int J Pharm., 423, 480–488, DOI: 10.1016/j.ijpharm.2011.12.004.
  • 6. Cho Y., Kim J.T., Park H.J.; (2012). Size-controlled self-aggregated N-acyl chitosan nanoparticles as a vitamin C carrier. Carbohydr Polym., 88, 1087–1092, DOI: 10.1016/j.carbpol.2012.01.074.
  • 7. Ju Y., Jang J., Woo Y., Chung H., Park R., Chan I., Yong J.; (2003). Biodistribution and anti-tumour efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Control Release, 91, 135–145, DOI: 10.1016/S0168-3659(03)00231-1.
  • 8. He C., Hu Y., Yin L., Tang C., Yin C.; (2010). Biomaterials effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials, 31, 3657–3666, DOI: 10.1016/j.biomaterials.2010.01.065.
  • 9. Alhareth K., Vauthier C., Gueutin C., Ponchel G., Moussa F.; (2012). HPLC quantification of doxorubicin in plasma and tissues of rats treated with doxorubicin loaded poly(alkylcyanoacrylate) nanoparticles. J Chromatogr B, 887-888, 128–132, DOI: 10.1016/j.jchromb.2012.01.025.
  • 10. Zhang C., Qu G., Sun Y., Wu X., Yao Z., Guo Q., Zhou H.; (2008). Pharmacokinetics, biodistribution, efficacy and safety of N-octyl-O-sulphate chitosan micelles loaded with paclitaxel. Biomaterials, 29, 1233–1241, DOI: 10.1016/j.biomaterials.2007.11.029.
  • 11. Pardeshi C.V., Belgamwar V. S.; (2013). Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv., 10, 957–972, DOI: 10.1517/17425247.2013.790887.
  • 12. Md S., Khan R.A., Mustafa G., Chuttani K., Baboota S., Sahni J.K., Ali J.; (2012). Bromocriptine-loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur J Pharm Sci., 48, 393–405, DOI: 10.1016/j.ejps.2012.12.007.
  • 13. Zubareva A., Ily’ina A., Prokhorov A., Kurek D., Efremov M., Varlamov V., Svirshchevskaya Е.; (2013). Characterization of protein and peptide binding to nanogels formed by differently charged chitosan derivatives. Molecules, 18, 7848–64, DOI:10.3390/molecules18077848.
  • 14. A. V. Il’ina, A. A. Zubareva, D. V. Kurek, A. N. Levov, and V. P. Varlamov ; (2012). Nanoparticles based on succinyl chitosan with doxorubicin: preparation and properties. Nanotechnology in Russia, 7, 85-92, DOI: 10.1134/S1995078012010107.
  • 15. Svirshchevskaya E.V., Mariotti J., Wright M.H., Viskova N.Y., Telford W., Fowler D.H., Varticovski L.; (2008). Rapamycin delays growth of Wnt-1 tumours in spite of suppression of host immunity. BMC cancer, 8, 176, DOI:10.1186/1471-2407-8-177.
  • 16. Long L.W., Times C., Gabizon A., Shioia R., Papahadjopoulos D.; (1989). Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst., 81, 1484–1488, DOI:10.1093/jnci/81.19.1484.
  • 17. Bhattarai N., Gunn J., Zhang M.; (2010). Chitosan-based hydrogels for controlled, localised drug delivery. Adv Drug Deliv Rev., 62, 83–99, DOI: 10.1016/j.addr.2009.07.019.
  • 18. Zhang L., Zhao Z.-L., Wei X.-H., Liu J.-H.; (2013). Preparation and in vitro and in vivo characterization of cyclosporin A-loaded, PEGylated chitosan-modified, lipid-based nanoparticles. Int. J Nanomedicine., 8, 601–10, DOI: 10.2147/IJN.S39685.
  • 19. Zubareva A.A., Kurek D.V., Sizova S.V., Svirshchevskaya E.V., Varlamov V.P.; (2012). Characterization of physicochemical parameters. Nanotechnology in Russia, 7, 428–433.
  • 20. Brazhe A.R., Brazhe N., Maksimov G.V, Ignatyev P.S., Rubin A.B., Mosekilde E., Sosnovtseva O.V.; (2008). Phase-modulation laser interference microscopy: an advance in cell imaging and dynamics study. J Biomed Opt., 13, 034004, DOI:10.1117/1.2937213.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-e10badc8-445a-4220-a180-474bc595bf5e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.