Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2012 | 66 | 3 | 44–56

Article title

Znaczenie epigenetyki w patogenezie czerniaka

Content

Title variants

EN
The role of epigenetics in the pathogenesis of melanoma

Languages of publication

PL

Abstracts

PL
Przez pojęcie epigenetyka należy rozumieć mechanizmy wpływające na regulację i modyfi kację ekspresji materiału genetycznego, jednocześnie niezmieniające sekwencji nukleotydów. Mechanizmy te obejmują zarówno metylację DNA, jak i modyfi kacje histonów. W artykule dokonano przeglądu aktualnych poglądów dotyczących zaburzeń procesów hiperi hipometylacji DNA oraz acetylacji histonów w patogenezie czerniaka, związanych z genami kontrolującymi cykl komórkowy, różnicowanie, naprawę DNA, apoptozę, sygnalizację komórkową, angiogenezę, metabolizm ksenobiotyków i powstawanie przerzutów. Ponadto przedstawiono nowe strategie leczenia czerniaka związane z epigenetyką.
EN
Epigenetics represents the mechanisms that infl uence the regulation and modifi cation of the expression of genetic material not related to the alterations in DNA sequences. These mechanisms include both DNA methylation and histone modifi cations. In the present article, we review current views on the role of aberrations of DNA hyper- and hypomethylation processes and the acetylation of histones, associated with genes that control the cell cycle, cell diff erentiation, DNA repair, apoptosis, cell signaling, angiogenesis, metabolism of xenobiotics and invasion, in the pathogenesis of melanoma. In addition, new strategies for treatment of melanoma associated with epigenetics are presented.

Discipline

Year

Volume

66

Issue

3

Pages

44–56

Physical description

Contributors

author
  • Katedra i Zakład Biofarmacji Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach ul. Narcyzów 1 41-200 Sosnowiec tel. 32 364 10 64
  • Katedra i Zakład Biofarmacji Śląskiego Uniwersytetu Medycznego w Katowicach
author
  • Katedra i Zakład Biologii Molekularnej Wydziału Farmaceutycznego z Oddziałem Medycyny Laboratoryjnej Śląskiego Uniwersytetu Medycznego w Katowicach
  • Katedra i Zakład Biofarmacji Śląskiego Uniwersytetu Medycznego w Katowicach
  • Katedra i Zakład Biofarmacji Śląskiego Uniwersytetu Medycznego w Katowicach

References

  • 1. Kwinta Ł. Epigenetyka czerniaka. Współcz. Onkol. 2008; 2: 45–50.
  • 2. Płachetka A., Wiczkowski A., Zalewska- -Ziob M. i wsp. Rola epigenetycznych zmian DNA w powstawaniu nowotworów. Śląski Uniwersytet Medyczny, Katowice: 2010.
  • 3. Jabłońska J., Jesionek-Kupnicka D. Zmiany epigenetyczne w nowotworach. Onkol. Pol. 2004; 7: 181–185.
  • 4. Howell P.M. Jr, Liu S., Ren S., Behlen C., Fodstad O., Riker A.I. Epigenetics in human melanoma. Cancer Control 2009; 16: 200–218.
  • 5. Brudnik U., Wojas-Pelc A., Branicki W. Genetyczne uwarunkowania czerniaka. Post. Dermatol. Alergol. 2006; 1: 21–25.
  • 6. Gonzalgo M.L. i wsp. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res. 1997; 23: 5336–5347.
  • 7. Freedberg D.E. i wsp. Frequent p16-independent inactivation of p14ARF in human melanoma. J. Natl. Cancer Inst. 2008; 100: 784–795.
  • 8. Liu S., Ren S., Howell P., Fodstad O., Riker A.I. Identifi cation of novel epigenetically modifi ed genes in human melanoma via promoter methylation gene profi ling. Pigment Cell Melanoma Res. 2008; 21: 545–558.
  • 9. Straume O., Smeds J., Kumar R., Hemminki K., Akslen L.A. Signifi cant impact of promoter hypermethylation and the 540 C > T polymorphism of CDKN2A in cutaneous melanoma of the vertical growth phase. Am. J. Pathol. 2002; 161: 229–237.
  • 10. Gmyrek G., Kwiatkowska E., Lamperska K., Mackiewicz A. Analiza metylacji wysp CpG w odcinkach promotorowych genów p16 i p15 w czerniaku złośliwym skóry i gałki ocznej. Współcz. Onkol. 2001; 1: 10–12.
  • 11. Marini A., Mirmohammadsadegh A., Nambiar S., Gustrau A., Ruzicka T., Hengge U.R. Epigenetic inactivation of tumor suppressor genes in serum of patients with cutaneous melanoma. J. Invest. Dermatol. 2006; 126: 422–431.
  • 12. Furuta J., Umebayashi Y., Miyamoto K. i wsp. Promoter methylation profi ling of 30 genes in human malignant melanoma. Cancer Sci. 2004; 95: 962–968.
  • 13. Muthusamy V. Epigenetic silencing of novel tumor suppressors in malignant melanoma. Cancer Res. 2006; 66: 11187–11193.
  • 14. Wojtczak W., Skrętkowicz J. Kliniczne znaczenie polimorfi zmu wybranych genów cytochromu P-450: rodziny CYP1, podrodziny CYP2A, CYP2B oraz CYP2C. Pol. Merkuriusz Lek. 2009; 153: 248–252.
  • 15. Denk A.E., Bettstetter M., Wild P.J. i wsp. Loss of maspin expression contributes to a more invasive potential in malignant melanoma. Pigment Cell Res. 2007; 20: 112–119.
  • 16. Worm J., Bartkova J., Kirkin A.F. i wsp. Aberrant p27Kip1 promoter methylation in malignant melanoma. Oncogene 2000, 19: 5111–5115.
  • 17. Koga Y., Pelizzola M., Cheng E. i wsp. Genome-wide screen of promoter methylation identifi es novel markers in melanoma. Genome Res. 2009; 19: 1462–1470.
  • 18. Kohonen-Corish M.R., Cooper W.A., Saab J., Thompson J.F., Trent R.J., Millward M.J. Promoter hypermethylation of the O(6)-methylguanine DNA methyltransfer- ase gene and microsatellite instability in metastatic melanoma. J. Invest. Dermatol. 2006; 126: 167–171.
  • 19. Mirmohammadsadegh A., Marini A., Nambiar S. i wsp. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006; 1: 6546–6552.
  • 20. Sigalotti L., Covre A., Fratta E. i wsp. Epigenetics of human cutaneous melanoma: setting the stage for new therapeutic strategies. J. Transl. Med. 2010; 8: 56–78.
  • 21. Sigalotti L. i wsp. Promoter methylation controls the expression of MAGE2, 3 and 4 genes in human cutaneous melanoma. J. Immunother. 2002; 25: 16–26.
  • 22. De Smet C., De Backer O., Faraoni I., Lurquin C., Brasseur F., Boon T. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide de- methylation. Proc. Natl. Acad. Sci. USA 1996; 93: 7149–7153.
  • 23. Chen S., Sang N. Histone deacetylase inhibitors: the epigenetic therapeutics that repress hypoxia-inducible factors. J. Biomed. Biotechnol. 2011; 2011: 197946–197960.
  • 24. Federico M., Bagella L. Histone deacety- lase inhibitors in the treatment of hematological malignancies and solid tumors. J. Biomed. Biotechnol. 2011; 2011: 475641–475653.
  • 25. Del Gaizo Moore V., Brown J.R., Certo M., Love T.M., Novina C.D., Letai A. Chronic lymphocytic leukemia requires BCL2 to sequester prodeath BIM, explaining sensi- tivity to BCL2 antagonist ABT-737. J. Clin. Invest. 2007; 117: 112–121.
  • 26. Zhang X.D., Gillespie S.K., Borrow J.M., Hersey P. The histone deacetylase inhibi- tor suberic bishydroxamate regulates the expression of multiple apoptotic media- tors and induces mitochondria-dependent apoptosis of melanoma cells. Mol. Cancer Ther. 2004; 3: 425–435.
  • 27. Facchetti F., Previdi S., Ballarini M., Mi- nucci S., Perego P., La Porta C.A. Modula- tion of pro- and anti-apoptotic factors in human melanoma cells exposed to histone deacetylase inhibitors. Apoptosis 2004; 9: 573–582.
  • 28. Kato Y., Salumbides B.C., Wang X.F. i wsp. Antitumor eff ect of the histone deacetylase inhibitor LAQ824 in combi- nation with 13-cis-retinoic acid in human malignant melanoma. Mol. Cancer. Ther. 2007; 6: 70–81.
  • 29. Demary K., Wong L., Spanjaard R.A. Eff ects of retinoic acid and sodium butyrate on gene expression, histone acety- lation and inhibition of proliferation of melanoma cells. Cancer Lett. 2001; 163: 103–107.
  • 30. Munshi A., Kurland J.F., Nishikawa T. i wsp. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin. Can- cer Res. 2005; 11: 4912–4922.
  • 31. Munshi A., Tanaka T., Hobbs M.L., Tucker S.L., Richon V.M., Meyn R.E. Vorinostat, a histone deacetylase inhibitor, enhances the response of human tumor cells to ionizing radiation through prolon- gation of gamma-H2AX foci. Mol. Cancer Ther. 2006; 5: 1967–1974.
  • 32. Mori T., Kim J., Yamano T. i wsp. Epi- genetic up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res. 2005; 65: 1800–1807.
  • 33. Kim S.H., Ahn S., Han J.W. i wsp. Apicidin is a histone deacetylase inhibitor with anti-invasive and anti-angiogenic poten- tials. Biochem. Biophys. Res. Commun. 2004; 315: 964–970.
  • 34. Bolden J.E., Peart M.J., Johnstone R.W. Anticancer activities of histone deacetylase inhibitors. Nat. Rev. Drug. Discov. 2006; 5: 769–784.
  • 35. Kim Y.B., Lee K.H., Sugita K. i wsp. Oxamfl atin is a novel antitumor compound that inhibits mammalian histone deacety- lase. Oncogene 1999; 18: 2461–2470.
  • 36. Zelent A., Petrie K., Lotan R., Waxman S., Gore S.D. Clinical translation of epigenetics in cancer: eN-CORe–a report on the sec- ond workshop. Mol. Cancer Ther. 2005; 4: 1810–1819.
  • 37. Kwon H.J., Owa T., Hassig C.A., Shi- mada J., Schreiber S.L. Depudecin induces morphological reversion of transformed fi broblasts via the inhibition of histone deacetylase. Proc. Natl. Acad. Sci. USA 1998; 95: 3356–3361.
  • 38. Boyle G.M., Martyn A.C., Parsons P.G. Histone deacetylase inhibitors and malig- nant melanoma. Pigment Cell. Res. 2005; 18: 160–166.
  • 39. Rosato R.R., Almenara J.A., Grant S. The histone deacetylase inhibitor MS-275 promotes diff erentiation or apoptosis in human leukemia cells through a process regulated by generation of reactive oxygen species and induction of p21CIP1/WAF11. Cancer Res. 2003; 63: 3637–3645.
  • 40. Michaelis M., Michaelis U.R., Fleming I. i wsp. Valproic acid inhibits angiogen- esis in vitro and in vivo. Mol. Pharmacol. 2004; 65: 520–527.
  • 41. Deroanne C.F. i wsp. Histone deacetylases inhibitors as anti-angiogenic agents altering vascular endothelial growth factor signaling. Oncogene 2002; 21: 427–436.
  • 42. Magner W.J., Kazim A.L., Stewart C. i wsp. Activation of MHC class I, II, and CD40 gene expression by histone deacety- lase inhibitors. J. Immunol. 2000; 165: 7017–7024.
  • 43. Daud A.I., Dawson J., De Conti R.C. i wsp. Potentiation of a topoisomerase I inhibitor, karenitecin, by the histone deacety- lase inhibitor valproic acid in melanoma: translational and phase I/II clinical trial. Clin. Cancer Res. 2009; 15: 2479–2487.
  • 44. Munster P.N., Marchion D., Thomas S. i wsp. Phase I trial of vorinostat and doxo- rubicin in solid tumours: histone deacety- lase 2 expression as a predictive marker. Br. J. Cancer 2009; 101: 1044–1050.
  • 45. Ren J., Singh B.N., Huang Q. i wsp. DNA hypermethylation as a chemotherapy target. Cell Signal 2011.
  • 46. Medina-Franco J.L., Caulfi eld T. Ad- vances in the computational development of DNA methyltransferase inhibitors. Drug. Discov. Today 2011; 16: 418–425.
  • 47. Lyko F., Brown R. DNA methyltrans- ferase inhibitors and the development of epigenetic cancer therapies. J. Natl. Cancer. Inst. 2005; 97:1498–1506.
  • 48. http://clinicaltrials.gov/ct2/show/NCT0 0398450?term=NCT00398450&rank=1
  • 49. http://clinicaltrials.gov/ct2/show/NCT0 0217542?term=NCT00217542&rank=1
  • 50. http://clinicaltrials.gov/ct2/show/NCT0 0791271?term=NCT00791271&rank=1
  • 51. http://clinicaltrials.gov/ct2/show/NCT0 0791271?term=NCT00791271&rank=1
  • 52. http://clinicaltrials.gov/ct2/show/NCT0 0715793?term=NCT00715793&rank=1
  • 53. http://clinicaltrials.gov/ct2/show/NCT0 0925132?term=NCT00925132&rank=1
  • 54. http://clinicaltrials.gov/ct2/show/NCT0 0358319?term=NCT00358319&rank=1
  • 55. http://clinicaltrials.gov/ct2/show/NCT0 0104884?term=NCT00104884&rank=1
  • 56. http://clinicaltrials.gov/ct2/show/NCT0 0185302?term=NCT00185302&rank=1
  • 57. http://clinicaltrials.gov/ct2/show/NCT0 0667082?term=NCT00667082&rank=1
  • 58. http://clinicaltrials.gov/ct2/show/NCT0 0121225?term=NCT00121225&rank=1
  • 59. http://clinicaltrials.gov/ct2/show/NCT0 0331955?term=NCT00331955&rank=1

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-dfaded41-5f2e-42ec-ab17-489f28ba36db
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.