PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 21 | 165-175
Article title

THE INFLUENCE OF C18-FATTY ACIDS ON CHEMICAL STRUCTURE OF CHITOSAN DERIVATIVES AND THEIR THERMAL PROPERTIES

Content
Title variants
Languages of publication
EN
Abstracts
EN
Chitosan derivatives with a series of fatty acids (FA) have been developed using simultaneous N- and O-acylation reaction by the combination of two ways of conducting the reaction, i.e. a carbodiimide catalysis and ionic amino group protection. The chemical structure of chitosan derivatives as well as the characterization of the FA substitution degree were done by the IR spectra analysis. The correlation between the substitution of the chitosan functional groups as well as the saturation of FA and the changes of structural and thermal properties of the derivatives has been presented.
Publisher

Year
Volume
21
Pages
165-175
Physical description
Contributors
  • West Pomeranian University of Technology,Szczecin Division of Biomaterials and Microbiological Technologies, Al. Piastów 45, 70-311 Szczecin, Poland
author
  • West Pomeranian University of Technology,Szczecin Division of Biomaterials and Microbiological Technologies, Al. Piastów 45, 70-311 Szczecin, Poland
  • West Pomeranian University of Technology,Szczecin Division of Biomaterials and Microbiological Technologies, Al. Piastów 45, 70-311 Szczecin, Poland
  • West Pomeranian University of Technology,Szczecin Division of Biomaterials and Microbiological Technologies, Al. Piastów 45, 70-311 Szczecin, Poland, apiegat@zut.edu.pl
References
  • [1] Aranaz I, Harris R, Heras A.; (2010) Chitosan amphiphilic derivatives. Chemistry and applications. Curr Org Chem 14, 308-330. DOI: 10.2174/138527210790231919
  • [2] Balan V, Verestiuc L.; (2014) Strategies to improve chitosan hemocompatibility: A review. Eur Polym J 53, 171-188. DOI: 10.1016/j.eurpolymj.2014.01.033
  • [3] Du Y-Z, Wang L, Yuan H, Hu F-Q.; (2011) Linoleic acid-grafted chitosan oligosaccharide micelles for intracellular drug delivery and reverse drug resistance of tumor cells. Int J Biol Macromol 48, 1, 215-222. DOI: 10.1016/j.ijbiomac.2010.11.005
  • [4] Hu F-Q, Zhao M-D, Yuan H, You J, Du Y-Z, Zeng S.; (2006) A novel chitosan oligosaccharide-stearic acid micelles for gene delivery: properties and in vitro transfection studies. Int J Pharm 315, 1-2, 158-166. DOI: 10.1016/j.ijpharm.2006.02.026
  • [5] Dong Y, Xu C, Wang J, Wang M, Wu Y, Ruan Y.; (2001) Determination of degree of substitution for N-acylated chitosan using IR spectra. Sci China Ser B Chem 44, 2, 216-224. DOI: 10.1007/BF02879541
  • [6] Duarte M., Ferreira M., Marvão M., Rocha J.; (2002) An optimised method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int J Biol Macromol 31, 1-3, 1-8. DOI: 10.1016/S0141-8130(02)00039-9
  • [7] Kasaai M.; (2008) A review of several reported procedures to determine the degree of N-acetylation for chitin and chitosan using infrared spectroscopy. Carbohydr Polym 71, 4, 497-508. DOI: 10.1016/j.carbpol.2007.07.009
  • [8] Khan TA, Peh KK, Ch’ng HS.; Reporting degree of deacetylation values of chitosan: the influence of analytical methods. J Pharm Pharm Sci a Publ Can Soc Pharm Sci Société Can des Sci Pharm 5, 3, 205-212.
  • [9] Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Aiba S.; (2002) Chemical Modification of Chitosan. 14: 1 Synthesis of Water-Soluble Chitosan Derivatives by Simple Acetylation. Biomacromolecules 3, 5, 1126-1128. DOI: 10.1021/bm0200480
  • [10] Badawy MEI, Rabea EI, Rogge TM, et al.; (2004) Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5, 2, 589-595. DOI: 10.1021/bm0344295
  • [11] Badawy MEI, Rabea EI, Rogge TM, et al.; (2005) Fungicidal and Insecticidal Activity of O-Acyl Chitosan Derivatives. Polym Bull 54, 4-5, 279-289. DOI: 10.1007/s00289-005-0396-z
  • [12] Marchessault RH, Pearson FG, Liang CY.; (1960) Infrared spectra of crystalline polysaccharides V. Chitin. Biochim Biophys Acta 43, 101-116. DOI: 10.1002/pol.1960.1204314109
  • [13] Bonferoni MC, Sandri G, Dellera E, et al.; (2014) Ionic polymeric micelles based on chitosan and fatty acids and intended for wound healing. Comparison of linoleic and oleic acid. Eur J Pharm Biopharm 87, 1, 101-106. DOI: 10.1016/j.ejpb.2013.12.018
  • [14] Xing K, Chen XG, Li YY, et al.; (2008) Antibacterial activity of oleoyl-chitosan nanoparticles: A novel antibacterial dispersion system. Carbohydr Polym 74, 1, 114-120. DOI: 10.1016/j.carbpol.2008.01.024
  • [15] R. H, Amiji MM.; (2002) Chitosan-Based Delivery Systems: Physicochemical Properties and Pharmaceutical Applications. In: Polymeric Biomaterials, Second Edition, Revised and Expanded. CRC Press; 2002:213. DOI: 10.1201/9780203904671.ch10
  • [16] Cedeño FO, Prieto MM, Espina A, García JR.; (2001) Measurements of temperature and melting heat of some pure fatty acids and their binary and ternary mixtures by differential scanning calorimetry. Thermochim Acta 369, 1-2, 39-50. DOI: 10.1016/S0040-6031(00)00752-8
  • [17] Qu X, Wirsén A, Albertsson A-C.; (2000) Novel pH-sensitive chitosan hydrogels: swelling behavior and states of water. Polymer (Guildf) 41, 12, 4589-4598. DOI: 10.1016/S0032-3861(99)00685-0
  • [18] Neto CGT, Giacometti JA, Job AE, Ferreira FC, Fonseca JLC, Pereira MR.; (2005) Thermal analysis of chitosan based networks. Carbohydr Polym 62, 2, 97-103. DOI: 10.1016/j.carbpol.2005.02.022
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-de60bfac-9ce4-4c50-a387-76bd5f23928e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.