PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 7 | 151-176
Article title

Analiza cech impaktu ukośnego na przykładzie struktur Porządzie, Jaszczułty i Ochudno

Authors
Content
Title variants
EN
Analysis of oblique impact features. A case study of Porzadzie, Jaszczulty and Ochudno structures
Languages of publication
PL
Abstracts
EN
It’s considered that one half of all projectiles are striking surface of planets at the angle lower than 45°. Our knowledge of oblique impact events is based on computer modelling, laboratory experiments and observation of craters on the Moon, Mars, Venus and other celestial bodies. Recent discovery in northeast Poland, reveals at least four structures with features reserved for low-angle impacts. In this article we show and explain them using high-quality laser air scanning data (LiDAR) in comparison to results of experiments and similar real known objects on other planets. Also we try to verify by analyzing historical sources if multiple impact event could occur in our area and, if it was noticed and reported in the papers.
Discipline
Publisher

Year
Volume
7
Pages
151-176
Physical description
Contributors
References
  • Bocquet L., 2003, The physics of stone skipping, Am. J. Phys., 71(2), s. 150–155.
  • Büthner F., 1660, Prodigium ignitum Die XXIII. Feb. Anno MDCLX. Gedani in Aere observatum. Physico-Mathematicae ventilationi subjectum, Gdańsk.
  • Ekholm A.G., Melosh H.J., 2001, Crater features diagnostic of oblique impacts: The size and position of the central peak, Geophysical Research Letters, 28(4), s. 623–626.
  • Fehlau G., 1661, Siebenfältiges Sonnen Wunder oder Sieben Neben-Sonnen So in diesem 1661. Jahr/den 20. Feb. St. N. am Sontage Sexagesima, umb 11. Uhr biß nach 12. am Himmel bey uns seynd geschen worden, Gdańsk, s. 28.
  • French B.M., 1998, Traces of catastrophe. a handbook of shock-metamorphic effects in terrestrial meteorite impact structuress, Lunar and Planetary Institute, Contribution No. 954, Houston, Texas.
  • Gault D.E., Wedekind J.A., 1978, Experimental studies of oblique impact, Lunar and Planetary Science Conference, 9th, s. 3843–3875.
  • Herrick R.R., Forsberg-Taylor N.K., 2003, The shape and appearance of craters formed by oblique impact on the Moon and Venus, Meteoritics & Planetary Science, 38(11), s. 1551–1578.
  • Herrick R.R., Hessen K.K., 2006, The planforms of low-angle impact craters in the northern hemisphere of Mars, Meteoritics & Planetary Science, 41(10), s. 1483–1495.
  • Herrick R.R., Yamamoto S., Barnouin-Jha O. S., Sugita S., Matsui, T., 2008, Constraints from laboratory experiments on crater excavation and formation of an uprange forbidden zone in an oblique impact, Lunar and Planetary Science 39#2305.
  • Hongwan L., 2011, What is the minimum water depth such that a stone can be skipped on the surface? www.quora.com.
  • Hughes D.W., 1980, On the mass distribution of meteorites and their influx rate, Solid particles in the solar system, s. 207–210.
  • Jones G.H.S., 1978, Coherently overturned flaps surrounding craters, Nature 273, s. 211–213.
  • Kamińska W., 2012, Opracowanie ekofizjograficzne podstawowe sporządzone na potrzeby Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Zatory, Warszawa, s. 7–8.
  • Krajewski M.D., 1859, Historya Stefana na Czarncy Czarnieckiego, Kraków, część III, s. 115–131.
  • McDonald M.A., Melosh H.J., Gulick S.P.S., 2008, Oblique impacts and peak ring position: Venus and Chicxulub, Geophysical Research Letters, vol. 35, L07203.
  • McEwen A., i in., 2010, The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP), Icarus 205, s. 2–37.
  • Ostaszewska E., Skorupski J., 2008, Studium uwarunkowań i kierunków zagospodarowania przestrzennego gminy Wyszków, Załącznik Nr 1 do Uchwały Nr XVII/103/2007 Rady Miejskiej w Wyszkowie, s. 16–18 (Charakterystyka stanu środowiska).
  • Palucis M., 2010, Airborne LiDAR of Meteor Crater and the surrounding Landscape, Lunar and Planetary Institute, www.lpi.usra.edu.
  • Poelchau M.H., 2010, The subsurface structure of oblique impact craters, Berlin.
  • Pokrzywnicki J., 1960, O bolidach obserwowanych nad Polską, Acta Geophys. Polon., vol. VIII, nr 3, 1960, s. 224–257.
  • Schultz P.H., 1992, Effect of impact angle on central peak/peak ring formation and crater collapse on Venus, Lunar and Planetary Inst., Papers Presented to the International Colloquium on Venus, s. 103–104.
  • Schultz P.H., Ernst C., A’Hearn M.F., Eberhardy C., Sunshine J.M., i zespół Deep Impact, 2006, The Deep Impact collision: a large-scale oblique impact experiment, Lunar and Planetary Science 37#2294.
  • Schultz P.H., Eberhardy C.A., Ernst C.M., A’Hearn M.F., Sunshine J.M., Lisse C.M., i in., 2007, The Deep Impact oblique impact cratering experiment, Icarus 190, s. 295–333.
  • Schultz P.H., Anderson J. B. L., Hermalyn B.,2009, Origin and significance of uprange ray patterns, Lunar and Planetary Science Conference 40#2496.
  • Shoemaker E.M., 1962, Interpretation of lunar craters, w: Kopal Z., Physics And Astronomy of the Moon, Chapter 8, s. 283–359.
  • Walesiak T.M., 2015, The possibly smallest complex impact crater on Earth, Lunar and Planetary Science Conference 46#2233.
  • Walesiak T.M., 2016, Analysis of traces suggesting multiple oblique impact event, Lunar and Planetary Science Conference 47#1104.
  • Żywirska M., 1973, Puszcza Biała – jej dzieje i kultura, Państwowe Wydawnictwo Naukowe, Warszawa.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-de3366d2-f6cd-448e-b031-b5b9c3736c58
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.