Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2022 | 44 | 24-42

Article title

MicroRNA and Immune Response to Viral, Bacterial and Fungal Infections

Content

Title variants

Languages of publication

EN

Abstracts

EN
Several kinds of microRNA have been studied as prospective biomarkers in the pursuit of better diagnostics tests for infectious diseases. miRNA which is processed mostly from introns plays a significant role in gene expression involving cell differentiation, proliferation, apoptosis, metabolism, and immune response. Many miRNA mimics or inhibitors are in their clinical phases and advancement in RNA interference will make miRNA become effective tools in the treatment of human infectious diseases. miRNA has been discovered to be largely involved in viral gene regulation as well as the change of host cellular genes during viral infections. The role of miRNA in most bacterial infections has not been thoroughly explored compared to viral infections. Recent studies have highlighted the vital role of host immunity against bacterial infections. miRNA that is sequenced due to fungal infections bear a close similarity to those produced in response to allergy or inflammation. Host-derived miRNA plays a vital role in immune regulation; inflammatory responses may be enhanced or inhibited by its upregulation or downregulation. Here, we outlined the involvement of microRNA in viral, fungal, and bacterial infections and the immune response associated. Further studies on these, will provide advanced diagnostic and treatment protocols for infectious diseases.

Discipline

Year

Volume

44

Pages

24-42

Physical description

Contributors

  • Department of Biochemistry, Adekunle Ajasin University, Akungba-Akoko, Ondo State, Nigeria
author
  • Department of Medical Laboratory Science, Rivers State University, Port Harcourt, Rivers State, Nigeria
  • Department of Medical Laboratory Services, University of Benin Teaching Hospital, Benin-city, Edo State, Nigeria
  • Department of Biological Sciences, University of Camerino, Camerino Macerata, Italy
  • Department of Pharmacology, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
  • Department of Microbiology, University of Nigeria, Nsukka, Enugu State, Nigeria
  • Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Oyo State, Nigeria
  • Department of Medical Laboratory Science, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
  • Department of Biochemistry, University of Lagos, Lagos, Nigeria
  • Department of Immunology, Institute of Biomedical Science, University of Sao Paulo, Brazil

References

  • [1] Almeida MI, Reis RM, Calin GA. MicroRNA history: Discovery, recent applications, and next frontiers. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis. 2011; 717(1-2): 1–8. https://doi.org/10.1016/j.mrfmmm.2011.03.009
  • [2] O'Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in endocrinology 2018; 9: 402. https://doi.org/10.3389/fendo.2018.00402
  • [3] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2): 281-297. https://doi.org/10.1016/s0092-8674(04)00045-5
  • [4] Trifari S, Pipkin ME, Bandukwala HS, Äijö T, Bassein J, Chen R, Martinez GJ, Rao A. MicroRNA-directed program of cytotoxic CD8+ T-cell differentiation. Proceedings of the National Academy of Sciences 2013; 110(46): 18608-18613. https://doi.org/10.1073/pnas.1317191110
  • [5] Zhou X, Li X,Wu M. miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal transduction and targeted therapy. 2018; 3(1): 1-13, https://doi.org/10.1038/s41392-018-0006-9
  • [6] Kane M, Golovkina T. Common threads in persistent viral infections. Journal of Virology 2010; 84(9): 4116-4123. https://doi.org/10.1128/jvi.01905-09
  • [7] Tokarz P, Blasiak J. The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochimica Polonica. 2012; 59: 4. https://doi.org/10.18388/abp.2012_2079
  • [8] Kumar S, Varela MF. Biochemistry of bacterial multidrug efflux pumps. International journal of molecular sciences. 2012; 13(4): 4484-4495. https://doi.org/10.3390/ijms13044484
  • [9] Ryan KJ, Ray CG. Sherris Medical Microbiology. 4th ed. McGraw Hill; 2004.
  • [10] Tribolet L, Kerr E, Cowled C, Bean AGD, Stewart CR, Dearnley M, Farr RJ. MicroRNA Biomarkers for Infectious Diseases: From Basic Research to Biosensing. Front. Microbiol. 2020; 11: 1197. https://doi.org/10.3389/fmicb.2020.01197
  • [11] Haidar M, Langsley G. Clinical Potential of miRNAs in Human and Infectious Diseases. Molecular and Cellular Therapies. 2020; 8(1): 1–18. https://doi.org/10.13052/mct2052-8426.811
  • [12] Ha M, Kim VN. Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology 2014; 15: 509–524. https://doi.org/10.1038/nrm3838
  • [13] Tanzer A, Stadler PF. Molecular evolution of a microRNA cluster. Journal of Molecular Biology 2004; 339: 327–35. https://doi.org/10.1016/j.jmb.2004.03.065
  • [14] Alarcón C, Lee H, Goodarzi H, Halberg N, TavazoieSF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015; 519: 482–485. https://doi.org/10.1038/nature14281
  • [15] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN. MicroRNA genes are transcribed by RNA polymerase II. The EMBO journal. 2004; 23(20): 4051-4060. https://doi.org/10.1038/sj.emboj.7600385
  • [16] Okada C, Yamashita E, Lee SJ, Shibata S, Katahira J, Nakagawa A, Tsukihara T. A high-resolution structure of the pre-microRNA nuclear export machinery. Science. 2009; 326(5957): 1275-1279. https://doi.org/10.1126/science.1178705
  • [17] Heman-Ackah SM, Hallegger M, Rao M, Wood M. RISC in PD: the impact of microRNAs in Parkinson's disease cellular and molecular pathogenesis. Frontiers in molecular neuroscience. 2013; 6: 40. https://doi.org/10.3389/fnmol.2013.00040
  • [18] Shutterstock. Prevent infectious disease images [Internet]; 2021 [cited 2021 Oct 17]; Avalible from: https://www.shutterstock.com/search/prevent+infectious+disease
  • [19] Ellwanger JH, de Lima KV, Chies JA. Emerging infectious disease prevention: Where should we invest our resources and efforts? Journal of infection and public health. 2019; 12(3): 313-316. https://doi.org/10.1016/j.jiph.2019.03.010
  • [20] Krauss H, Weber A, Appel M, Enders B, Isenberg HD, SchieferHG,Slenczka W, von Graevenitz A, Zahner H. Zoonoses: Infectious Diseases Transmissible from Animals to Humans. D.C.3rd Edition. American Society for Microbiology Press. Washington; 2003. 456 p.
  • [21] WHO. Global Health Estimates 2016: Disease Burden by Cause, Age, Sex, by Country and by Religion, 2000-2016. Geneva: World Health Organization. 2018a.
  • [22] Izar B, Mannala GK, Mraheil MA, Chakraborty T, Torsten Hain. MicroRNA Response to Listeria monocytogenes Infection in Epithelial Cells. Int. J. Mol. Sci. 2012; 13: 1173-1185. https://doi.org/10.3390/ijms13011173
  • [23] Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, David M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature. 2007; 449(7164): 919-922. https://doi.org/10.1038/nature06205
  • [24] Kumar M, Sahu SK, Kumar R, Subuddhi A, Maji RK, Jana K, Basu J. MicroRNA let-7 modulates the immune response to Mycobacterium tuberculosis infection via control of A20, an inhibitor of the NF-κB pathway. Cell host & microbe 2015; 17(3): 345-356. https://doi.org/10.1016/j.chom.2015.01.007
  • [25] Bader AG, Brown D, Winkler M. The promise of microRNA replacement therapy. Cancer Res. 2010; 70(18): 7027–7030. https://doi.org/10.1158/0008-5472.can-10-2010
  • [26] Elmén J, Lindow M, Silahtaroglu A, Bak M, Christensen M, Lind-Thomsen A, Hedtjärn M, Hansen JB, Hansen HF, Straarup EM, McCullagh K, Kearney P, Kauppinen S. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Research. 2008; 36(4): 1153-1162. https://doi.org/10.1093/nar/gkm1113
  • [27] Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, O’Connell RM. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nature communications. 2015; 6: 7321. https://doi.org/10.1038/ncomms8321
  • [28] Aguilar C, Mano M, Eulalio A. Multifaceted roles of microRNAs in host-bacterial pathogen interaction. Microbiology spectrum. 2019; 7(3): 7-3. https://doi.org/10.1128/9781683670261.ch17
  • [29] Das K, Garnica O, Dhandayuthapani S. Modulation of host miRNAs by intracellular bacterial pathogens. Frontiers in cellular and infection microbiology. 2016; 6: 79. https://doi.org/10.3389/fcimb.2016.00079
  • [30] Polk D, Peek R. Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 2010; 10: 403–414. https://doi.org/10.1038/nrc2857
  • [31] Xiao B, Liu Z, Li BS, Tang B, Li W, Guo G, Shi Y, Wang F, Wu Y, Tong W, Guo H, Mao X, Zou, Q. M. Induction of microRNA-155 during Helicobacter pylori infection and its negative regulatory role in the inflammatory response. The Journal of infectious diseases. 2009; 200(6): 916-925. https://doi.org/10.1086/605443
  • [32] Lv X, Song H, Yang J, Li T, Xi T, Xing Y. A multi-epitope vaccine CTB-UE relieves Helicobacter pylori-induced gastric inflammatory reaction via up-regulating microRNA-155 to inhibit Th17 response in C57/BL6 mice model. Human vaccines & immunotherapeutics 2014; 10(12): 3561-3569. https://doi.org/10.4161/hv.36096
  • [33] Rad ZR, Rad ZR, Goudarzi H, Goudarzi M, Mahmoudi M, Sharahi JY, Hashemi A. MicroRNAs in the interaction between host–bacterial pathogens: A new perspective. J Cell Physiol. 2021; 236: 6249–6270. https://doi.org/10.1002/jcp.30333
  • [34] Yang S, Li F, Jia S, Zhang K, Jiang W, Shang Y, Chang K, Deng S, Chen, M. Early secreted antigen ESAT-6 of Mycobacterium tuberculosis promotes apoptosis of macrophages via targeting the microRNA155-SOCS1 interaction. Cellular Physiology and Biochemistry. 2015; 35(4): 1276-1288. https://doi.org/10.1159/000373950
  • [35] Rothchild AC, Sissons JR, Shafiani S, Plaisier C, Min D, Mai D, Gilchrist M, Peschon J, Larson RP, Bergthaler A, Baliga NS, Urdahl KB, Aderem A. MiR-155–regulated molecular network orchestrates cell fate in the innate and adaptive immune response to Mycobacterium tuberculosis. Proceedings of the National Academy of Sciences. 2016; 113(41): E6172-E6181. https://doi.org/10.1073/pnas.1608255113
  • [36] Liang S, Song Z, Wu Y, Gao Y, Gao M, Liu F, Wang F, Zhang Y. MicroRNA-27b modulates inflammatory response and apoptosis during Mycobacterium tuberculosis infection. The Journal of Immunology. 2018; 200(10): 3506-3518. https://doi.org/10.4049/jimmunol.1701448
  • [37] Rajaram MV, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, Schoenberg DR, Torrelles JB, Schlesinger LS. Mycobacterium tuberculosis lipomannan blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2) and microRNA miR-125b. Proceedings of the national academy of sciences. 2011; 108(42): 17408-17413. https://doi.org/10.1073/pnas.1112660108
  • [38] Schnitger AKD, Machova A, Mueller RU, Androulidaki A, Schermer B, Pasparakis M, Krönke M, Papadopoulou N. Listeria monocytogenes Infectionin Macrophages Induces Vacuolar-Dependent Host miRNA Response. PLoS ONE. 2011; 6(11): e27435. https://doi.org/10.1371/journal.pone.0027435
  • [39] Lind EF, Elford AR, Ohashi PS. Micro-RNA 155 is required for optimal CD8+ T cell responses to acute viral and intracellular bacterial challenges. The Journal of Immunology. 2013; 190(3): 1210-1216. https://doi.org/10.4049/jimmunol.1202700
  • [40] Gunn JS. Salmonella host–pathogen interactions: A special topic. Frontiers in microbiology. 2011; 2: 191. https://doi.org/10.3389/fmicb.2011.00191
  • [41] Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M, Spaink HP, Meijer AH. MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos to Salmonella typhimurium infection. BMC genomics. 2013; 14(1): 1-15. https://doi.org/10.1186/1471-2164-14-696
  • [42] Maudet C, Mano M, Sunkavalli U, Sharan M, Giacca M, Förstner KU, Eulalio A. Functional high-throughput screening identifies the miR-15 microRNA family as cellular restriction factors for Salmonella infection. Nature communications. 2014; 5(1): 1-13. https://doi.org/10.1038/ncomms5718
  • [43] Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, Liu F, Zhang C, Gu H, Zen K. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. The Journal of infectious diseases. 2014; 209(12): 2000-2011. https://doi.org/10.1093/infdis/jiu006
  • [44] Verschoor CP, Dorrington MG, Novakowski KE, Kaiser J, Radford K, Nair P, Anipindi V, Kaushic C, Surette MG, Bowdish DM. MicroRNA-155 is required for clearance of Streptococcus pneumoniae from the nasopharynx. Infection and immunity. 2014; 82(11): 4824-4833. https://doi.org/10.1128/iai.02251-14
  • [45] Kalantari P, Harandi OF, Agarwal S, Rus F, Kurt-Jones EA, Fitzgerald KA, Golenbock DT. miR-718 represses proinflammatory cytokine production through targeting phosphatase and tensin homolog (PTEN). Journal of Biological Chemistry. 2017; 292(14): 5634-5644. https://doi.org/10.1074/jbc.m116.749325
  • [46] Chu Q, Sun Y, Cui J, Xu T. Inducible microRNA-214 contributes to the suppression of NF-κB-mediated inflammatory response via targeting myd88 gene in fish. Journal of Biological Chemistry. 2017; 292(13): 5282-5290. https://doi.org/10.1074/jbc.m117.777078
  • [47] Chen L, Zhou Y, Li H. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus research. 2018; 257: 25-32. https://doi.org/10.1016/j.virusres.2018.08.018
  • [48] Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Dowlath MJH, Serati-Nouri H. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Archives of Virology. 2021; 1-24. https://doi.org/10.1007/s00705-021-05152-5
  • [49] Kitazawa H, Villena J. Modulation of respiratory TLR3-anti-viral response by probiotic microorganisms: lessons learned from Lactobacillus rhamnosus CRL1505. Frontiers in immunology. 2014; 5: 201. https://doi.org/10.3389/fimmu.2014.00201
  • [50] Li Y, Shi X. MicroRNAs in the regulation of TLR and RIG-I pathways. Cellular & molecular immunology. 2013; 10(1): 65-71. https://doi.org/10.1038/cmi.2012.55
  • [51] Trobaugh DW, Gardner CL, Sun C, Haddow AD, Wang E, Chapnik E, Mildner A, Weaver SC, Ryman KD, Klimstra WB. (2014). RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014; 506(7487): 245-248. https://doi.org/10.1038/nature12869
  • [52] Bochnakian A, Zisoulis DG, Idica A, Zhen A, Kewal Ramani VN, Daugaard I, Hamdorf M, Kitchen S, Lee K, Pedersen IM. Interferon-inducible microRNA miR-128 modulates HIV-1 replication by targeting TNPO3 mRNA. Journal of virology. 2019; 93(20): e00364-19. https://doi.org/10.1101/195511
  • [53] Wen W, He Z, Jing Q, Hu Y, Lin C, Zhou R, Wang X, Su Y, Yuan J, Chen Z, Yuan J, Wu J, Li J, Zhu X, Li M. Cellular microRNA-miR-548g-3p modulates the replication of dengue virus. Journal of Infection. 2015; 70(6): 631-640. https://doi.org/10.1016/j.jinf.2014.12.001
  • [54] Zhang S, Li J, Li J, Yang Y, Kang X, Li Y, Wu X, Zhu Q, Zhou Y, Hu Y. Up-regulation of microRNA-203 in influenza A virus infection inhibits viral replication by targeting DR1. Scientific reports. 2018; 8(1): 1-15. https://doi.org/10.1038/s41598-018-25073-9
  • [55] Tycowski KT, Guo YE, Lee N, Moss WN, Vallery TK, Xie M, Steitz JA. Viral noncoding RNAs: more surprises. Genes & development. 2015; 29(6): 567-584. https://doi.org/10.1101/gad.259077.115
  • [56] Abedini M, Zhang C. Performance Assessment of Concrete and Steel Material Models in LS-DYNA for Enhanced Numerical Simulation, A State of the Art Review. Arch Computat Methods Eng. 2021; 28: 2921–2942. https://doi.org/10.1007/s11831-020-09483-5
  • [57] Mishra R, Bhattacharya S, Rawat BS, Kumar A, Kumar A, Niraj, K, Chande A, Gandhi P, Khetan D, Aggarwal A, Sato S, Tailor P, Takaoka A, Kumar H. MicroRNA-30e-5p has an integrated role in the regulation of the innate immune response during virus infection and systemic lupus erythematosus. Iscience. 2020; 23(7): 101322. https://doi.org/10.1016/j.isci.2020.101322
  • [58] Yasukawa K, Kinoshita D, Yaku K, Nakagawa T, Koshiba T. The microRNAs miR-302b and miR-372 regulate mitochondrial metabolism via the SLC25A12 transporter, which controls MAVS-mediated antiviral innate immunity. Journal of Biological Chemistry. 2020; 295(2): 444-457. https://doi.org/10.1074/jbc.ra119.010511
  • [59] Zhao L, Zhu J, Zhou H, Zhao Z, Zou Z, Liu X, Lin X, Zhang X, Deng X, Wang R, Chen H, Jin M. Identification of cellular microRNA-136 as a dual regulator of RIG-I-mediated innate immunity that antagonizes H5N1 IAV replication in A549 cells. Scientific reports. 2015; 5(1): 1-13. https://doi.org/10.1038/srep14991
  • [60] Croston TL, Lemons AR, Beezhold DH, Green BJ. MicroRNA regulation of host immune responses following fungal exposure. Frontiers in immunology. 2018; 9: 170. https://doi.org/10.3389/fimmu.2018.00170
  • [61] Marioto DTG, D., dos Santos Ferraro ACN, de Andrade FG, Oliveira MB, Itano EN, Petrofeza S, Venancio EJ. Study of differential expression of miRNAs in lung tissue of mice submitted to experimental infection by Paracoccidioides brasiliensis. Medical mycology. 2017; 55(7): 774-784. https://doi.org/10.1093/mmy/myw135
  • [62] Chen H, Jin Y, Chen H, Liao N, Wang Y, Chen J. MicroRNA-mediated inflammatory responses induced by Cryptococcus neoformans are dependent on the NF-κB pathway in human monocytes. International journal of molecular medicine. 2017; 39(6): 1525-1532. https://doi.org/10.3892/ijmm.2017.2951
  • [63] Gupta MD, Fliesse, M, Springer J, Breitschopf T, Schlossnage, H, Schmitt AL, Löffler J. Aspergillus fumigatus induces microRNA-132 in human monocytes and dendritic cells. International Journal of Medical Microbiology. 2014; 304(5-6): 592-596. https://doi.org/10.1016/j.ijmm.2014.04.005
  • [64] Dix A, Czakai K, Leonhardt I, Schäferhoff K, Bonin M, Guthke R, Einsele H, Kurzai O, Löffler J and Linde J. Specific and novel microRNAs are regulated as response to fungal infection in human dendritic cells. Front Microbiol. 2017; 8: 270. https://doi.org/10.3389/fmicb.2017.00270
  • [65] Goldani LZ, Wirth F. Animal models and antifungal agents in paracoccidioidomycosis: an overview. Mycopathologia. 2017; 182(7): 633-643. https://doi.org/10.1007/s11046-017-0130-z
  • [66] De Lacorte SJ, De Fátima DJ, Gullo FP, Costa MC, Fusco-Almeida AM, Enguita FJ, Mendes-Giannini MJS. Preliminary evaluation of circulating microRNAs as potential biomarkers in paracoccidioidomycosis. Biomed Rep. 2017; 6(3): 353–7. https://doi.org/10.3892/br.2017.849
  • [67] Pearson C, Littlewood E, Douglas P, Robertson S, Gant TW, Hansell AL. Exposures and health outcomes in relation to bioaerosol emissions from composting facilities: a systematic review of occupational and community studies. Journal of Toxicology and Environmental Health. 2015;18(1):43-69. https://doi.org/10.1080/10937404.2015.1009961
  • [68] Kauffman CA, Nicolasora NP. Epidemiology of Invasive Pulmonary Aspergillosis. In: ComarúPasqualotto A. (eds) Aspergillosis: From Diagnosis to Prevention. Springer, Dordrecht. 2009. https://doi.org/10.1007/978-90-481-2408-4_20
  • [69] Das Gupta M, Fliesser M, Springer J, Breitschopf T, Schlossnagel H, Schmitt AL,Kurzai O, Hunniger K, Einsele K, Loffler J. Aspergillus fumigatus induces microRNA-132 in human monocytes and dendritic cells. Int J Med Microbiol. 2014; 304(5–6): 592–6. https://doi.org/10.1016/j.ijmm.2014.04.005
  • [70] Croston, TL, Ajay PN, Angela RL, Goldsmith WT, Ja KG, Dori RG, Donald HB, Brett JG. Influence of Aspergillus fumigatus conidia viability on murine pulmonary micro RNA and m RNA expression following subchronic inhalation exposure. Clinical & Experimental Allergy. 2016; 46(10): 1315-1327. https://doi.org/10.1016/j.ijmm.2014.04.005
  • [71] CDC. Fungal Diseases: Candidiasis [Internet]; 2017 [cited 2021 Oct 17]; Available from: https://www.cdc.gov/fungal/diseases/candidiasis/index.html
  • [72] Johnnidis JB, Harris MH, Wheeler RT, Stehling-Sun S, Lam MH, Kirak O, Brummelkamp TR, Fleming MD, Camargo FD. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature. 2008; 451: 1125. https://doi.org/10.1038/nature06607
  • [73] Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in macrophage activation. Front Immunol. 2019; 10: 799. https://doi.org/10.3389/fimmu.2019.00799
  • [74] Lai L, Song Y, Liu Y, Chen Q, Han Q, Chen W, Pan T, Zhang Y, Cao X, Wang Q. MicroRNA-92a negatively regulates Toll-like receptor (TLR)-triggered inflammatory response in macrophages by targeting MKK4 kinase. J Biol Chem. 2013; 288: 7956–67. https://doi.org/10.1074/jbc.M112.445429
  • [75] Ha TY. The role of microRNAs in regulatory T cells and in the immune response. Immunenetwork. 2011; 11(1): 11-41. https://doi.org/10.4110/in.2011.11.1.11
  • [76] Testa U, Pelosi E, Castelli G, Labbaye C. miR-146 and miR-155: two key modulators of immune response and tumor development. Non-coding RNA. 2017; 3: 22. https://doi.org/10.3390/ncrna3030022
  • [77] Rodríguez-Galán A, Fernández-Messina L, Sánchez-Madrid F. Control of immunoregulatory molecules by miRNAs in T cell activation. Frontiers in immunology. 2018; 9: 2148. https://doi.org/10.3389/fimmu.2018.02148
  • [78] Baumjohann D, Ansel KM. MicroRNA-mediated regulation of T helper cell differentiation and plasticity. Nat Rev Immunol. 2013; 13(9): 666-678. https://doi.org/10.1038/nri3494
  • [79] Hippen KL, Loschi M, Nicholls J, MacDonald K, Blazar BR. Effects of microRNA on regulatory T cells and implications for adoptive cellular therapy to ameliorate graft-versus-host disease. Frontiers in immunology. 2018; 9: 57. https://doi.org/10.3389/fimmu.2018.00057
  • [80] Xu S, Guo K, Zeng Q, Huo J, Lam KP. The RNase III enzyme dicer is essential for germinal center B-cell formation. Blood. 2021; 119: 767–76. https://doi.org/10.1182/blood-2011-05-355412
  • [81] Danger R, Braza F, Giral M, Soulillou JP, Brouard S. MicroRNAs, major players in B cells homeostasis and function. Front Immunol. 2014; 5: 98. https://doi.org/10.3389/fimmu.2014.00098

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-dc0d5e5d-2330-469a-bcfd-2b4ca68ab83f
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.