Preferences help
enabled [disable] Abstract
Number of results
2020 | 147 | 140-165
Article title

Review on Multi-dimensional Zinc Oxide Nanostructures

Title variants
Languages of publication
Nanostructured materials are being widely investigated due to their versatile properties leading to promising applications in various areas starting from electronics to environment and medical science. Amongst the various investigated nanostructures, Zinc Oxide (ZnO) is very important because of its versatile properties like high and direct band gap, optical transparency, room temperature ferromagnetism, piezoelectric property and gas sensing property. This mini review article is focused on the morphological study of various ZnO nanostructures starting from hierarchical nanostructures to quantum dots.
Physical description
  • Department of Physics, Sahid Matangini Hazra Government College for Women, Tamluk, Purba Medinipur, West Bengal, India
  • Department of Physics, Panskura Banamali College (Autonomous), Panskura, Purba Medinipur, West Bengal, India
  • Department of Physics (PG & UG), Prabhat Kumar College, Contai - 721404, West Bengal, India
  • [1] Malhotra, M. Maldovan, Impact of Phonon Surface Scattering on Thermal Energy Distribution of Si and SiGe Nanowires. Sci Rep 6 (2016) 25818
  • [2] E. B. Ramayya, D. Vasileska, S. M. Goodnick, I. Knezevic, Electron transport in silicon nanowires: The role of acoustic phonon confinement and surface roughness scattering. J Appl Phys 104 (2008) 063711
  • [3] M. S. Ghamsari, S. Alamdari, W. Han, H. H. Park, Impact of nanostructured thin ZnO film in ultraviolet protection. Int J Nanomedicine 28 (2016) 207-216
  • [4] S. I Senatova, A. R. Mandal, F. S. Senatov, N. Yu Anisimova, S. E. Kondakov, P. K. Samanta, D. V. Kuznetsov. Optical Properties of Stabilized ZnO Nanoparticles, Perspective for UV-Protection in Sunscreens. Current Nanoscience 11(3) (2015) 354-359
  • [5] H. Dai, E. W. Wong, C. M. Lieber, Probing Electrical Transport in Nanomaterials: Conductivity of Individual Carbon Nanotubes. Science 272 (1996) 523-526
  • [6] P. K. Samanta, Dynamic Conduction in 2-Dimensional Conductor: Magneto-Conductivity Tensor under Rapid Oscillatory Electric field. J Nano- Electron Phys 8(2) (2016) 02037
  • [7] P. K. Samanta, T. Kamilya, D. Pahari, Study of Time Dependent Interaction of ZnO Nanoparticles with Sucrose and Honey Molecules to Understand Sucrose Stabilization Mechanism using Nanoparticles towards Biomedical Applications. Current Nanomaterials 4 (2019) 216-222
  • [8] D. L. Leslie-Pelecky, R. D. Rieke, Magnetic Properties of Nanostructured Materials. Chem Mater 8 (1996) 1770-1783
  • [9] P. K. Samanta, A. Saha, T. Kamilya. Chemical Synthesis and Optical Properties of ZnO Nanoparticles. J Nano- Electron Phys 6(4) (2014) 04015
  • [10] N. Kamarulzaman, M. F. Kasim, R. Rusdi, Band Gap Narrowing and Widening of ZnO Nanostructures and Doped Materials. Nanoscale Res Lett 10 (2015) 346
  • [11] S. Basak, P. K. Samanta, Enhanced Photoluminescence from core-shell ZnO/ZnS nanostructures. J Chemical Eng Mater Sci 3(2) (2012) 18-22
  • [12] P. K. Samanta, P. R. Chaudhuri, Growth and Optical Properties of Chemically Grown ZnO Nanobelts. Sci Adv Mater 3 (2011) 112-117
  • [13] T. Makino, Y. Segawa, M. Kawasaki, H. Koinuma, Optical properties of excitons in ZnO-based quantum well heterostructures. Semicond Sci Technol 20 (2005) S78
  • [14] P. K. Samanta, S. K. Patra, P. Roy Chaudhuri, Visible Emission from ZnO Nanorods Synthesized by a Simple Wet Chemical Method. Int J Nanosci Nanotechnol 1 (2009) 81-90
  • [15] A. Mosquera, D. Horwat, A. Rashkovskiy, A. et al. Exciton and core-level electron confinement effects in transparent ZnO thin films. Sci Rep 3 (2013) 1714
  • [16] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-Temperature Ultraviolet Nanowire Nanolasers. Science 292 (2001) 1897-1899
  • [17] H. Chou, K. Yang, S. Xiao, R. A. Patil, C. Lai, W. V. Yeh, C. Ho, Y. Liou, Y. Ma, Temperature-dependent ultraviolet photoluminescence in hierarchical Zn, ZnO and ZnO/Zn nanostructures. Nanoscale 11 (2019) 13385-13396
  • [18] L. Yi, Z. Xu, Y. Hou, X. Zhang, Y. Wang, X. Xu, The ultraviolet and blue luminescence properties of ZnO:Zn thin film. Chin Sci Bull 46 (2001) 1223-1226
  • [19] Y. Zhang, W. Zhang, C. Peng, Strong ultraviolet luminescence of ZnO thin films with nanowall-network structures. Optics Express 16 (2008) 10696
  • [20] Markevich, T. Stara, L. Khomenkova, V. Kushnirenko, L. Borkovska, Photoluminescence engineering in polycrystalline ZnO and ZnO-based compounds. AIMS Materials Science 3(2) (2016) 508-524
  • [21] P. K. Samanta, A Brief Review on Green Synthesis of ZnO nanostructures and its Biological Applications. BOAJ-Physics 1 (2016) 1-11
  • [22] M. D. McCluskey, S. J. Jokela, Defects in ZnO. Journal of Applied Physics 106 (2009) 071101
  • [23] A. Janotti, C. G. Van de Walle, Native point defects in ZnO. Phys Rev B 76 (2007) 165202
  • [24] A. A. Sokol, S. A. French, S. T. Bromley, C. R. A. Catlow, H. J. J. van Dam, P. Sherwood, Point defects in ZnO. Faraday Discuss 134 (2007) 267-282
  • [25] N. Karak, P. K. Samanta, T. K. Kundu, Structural and Optical Properties of Alumina Templated Undoped and Co-Doped Zinc Oxide Nanoparticles. Journal of Nanoengineering and Nanomanufacturing 3 (3) (2013) 211-216
  • [26] A. Chakrabarty, C. H. Patterson, Transition levels of defects in ZnO: Total energy and Janak's theorem methods. J Chem Phys 137(2012) 054709
  • [27] B. Walter, R. L. Lambrecht, Electronic structure of defects and doping in ZnO: Oxygen vacancy and nitrogen doping. Physica Status Solidi 250 (2013) 2091-2101.
  • [28] F. Oba, M. Choi, A. Togo, I. Tanaka, Point defects in ZnO: an approach from first principles. Science and Technology of Advanced Materials, 12 (2011) 034302
  • [29] D. Damberga, R. Viter, V. Fedorenko, I. Iatsunskyi, E. Coy, O. Graniel, S. Balme, P. Miele, M. Bechelany, Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. J Phys Chem C 124 (2020) 9434–9441
  • [30] Zhou, K. Nomenyo, C. C. Cesar, A. Lusson, A. Schwartzberg, C. Yen, W. Woon, G. Lerondel, Giant defect emission enhancement from ZnO nanowires through desulfurization process. Scientific Reports 10 (2020) 4237
  • [31] H. Luitel, D. Sanyal, N. Gogurla, A. Sarkar Defect generation and recovery in polycrystalline ZnO during annealing below 300 °C as studied by in situ positron annihilation spectroscopy. J Mater Sci 52 (2017) 7615-7623
  • [32] P. K. Samanta, Strong and weak quantum confinement and size dependent optoelectronic properties of zinc oxide. Ann Univ Craiova Phys 28 (2018) 17-23
  • [33] D. H. Zhang, Z. Y. Xue, Q. P. Wang, The mechanisms of blue emission from ZnO films deposited on glass substrate by r.f. magnetron sputtering. J Phys D: Appl Phys 35 (2002) 2837
  • [34] N. H. Alvi, K. U. Hasan, O. Nur, M. Willander, The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes. Nanoscale Res Lett 6(1) (2011) 130
  • [35] P. K. Samanta, S. K. Patra, P. R. Chaudhuri, Violet emission from flower-like bundle of ZnO nanosheets. Physica E 41 (4) (2009) 664-667
  • [36] 36. V. Mai, Q. Hoang, X. Mai, Enhanced Red Emission in Ultrasound-Assisted Sol-Gel Derived ZnO/PMMA Nanocomposite. Advances in Materials Science and Engineering 2018 (2018) 7252809
  • [37] X. Zhang, W. Zhang, X. Zhang, X. Xu, F. Meng, C. C. Tang, Defects Induced Room Temperature Ferromagnetism in ZnO Thin Films. Advances in Condensed Matter Physics 2014 (2014) 806327
  • [38] D. Gao, Z. Zhang, J. Fu, Y. Xu, J. Qi, D. Xue, Room temperature ferromagnetism of pure ZnO nanoparticles. Journal of Applied Physics 105 (2009) 113928
  • [39] B. Straumal, S. G. Protasova, A. A. Mazilkin, E. Goering, G. Schütz, P. B. Straumal, B. Baretzky, Ferromagnetic behaviour of ZnO: the role of grain boundaries. Beilstein J Nanotechnol, 7 (2016) 1936-1947
  • [40] Z. Lin Wang, J. Song, Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 312 (2006) 242-246
  • [41] S. Baruah, J. Dutta, Hydrothermal growth of ZnO nanostructures. Sci Technol Adv Mater 10 (2009) 013001
  • [42] Z. L. Wang, Zinc oxide nanostructures: growth, properties and applications. J Phys: Condens Matter 16 (2004) R829
  • [43] M. A. Borysiewicz, ZnO as a Functional Material, a Review. Crystals 9 (2019) 505
  • [44] R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Zinc Oxide Nanostructures for NO2 Gas Sensor Applications: A Review. Nano-Micro Lett 7(2) (2015) 97-120
  • [45] M. Liu, G. Ma, X. Xiong, Z. Wang, R. Peng, J. Zheng, D. Shu, Z. Zhang, M. Wang, Microscopic view of the role of repeated polytypism in self-organization of hierarchical nanostructures. Phys Rev B 87 (2013) 085306
  • [46] R. A. Rani, A. S. Zoolfakar, W. S. W. M. Sabri, S. Alrokayan, H. A. Khan, M. Rusop, Influence of the precursor and annealing temperature on the hydrothermal growth of ZnO nanostructures. IOP Conf Series: Materials Science and Engineering 380 (2018) 012018
  • [47] K.-M. Kim, H.-R. Kim, K.-I. Choi, H.-J. Kim, J.-H. Lee, Design of Highly Sensitive C2H5OH Sensors Using Self-Assembled ZnO Nanostructures. Sensors 11 (2011) 9685-9699
  • [48] K. Kim, B. Kumar, K. Lee et al., Piezoelectric two-dimensional nanosheets/anionic layer heterojunction for efficient direct current power generation. Sci Rep 3 (2013) 2017
  • [49] Pradhan, K. T. Leung, Electrodeposition Controlled Growth of Two-Dimensional and One-Dimensional ZnO Nanostructures on Indium Tin Oxide Coated Glass by Direct. Langmuir 24 (2008) 9707-9716
  • [50] Y. Y. Ryu, T. Kim, H. Han, Synthesis of Porous ZnO Nanosheets and Carbon Nanotube Hybrids as Efficient Photocatalysts via Pulsed Laser Ablation. Catalysts 9 (2019) 787
  • [51] P. K. Samanta, Chemical Synthesis of Zinc Oxide Nanorods and its Transformation into Nanotubes. Turkish J Physics 43 (2019) 576-581
  • [52] S. Cho, S. Jung, K. Lee, Morphology-Controlled Growth of ZnO Nanostructures Using Microwave Irradiation: from Basic to Complex Structures. J Phys Chem C 112 (2008) 12769-12776
  • [53] P. Zhu, J. Zhang, Z. Wu, Z. Zhang, Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven. Cryst Growth Des 8 (2008) 3148-3153
  • [54] S. T. Tan, A. A. Umar, M. Yahaya, C. C. Yap, M. M. Salleh, Ultrafast Formation of ZnO Nanorods via Seed-Mediated Microwave Assisted Hydrolysis Process. Journal of Physics: Conference Series 431 (2013) 012001
  • [55] Rana, A.U.H.S.; Lee, J.Y.; Shahid, A.; Kim, H.-S. Growth Method-Dependent and Defect Density-Oriented Structural, Optical, Conductive, and Physical Properties of Solution-Grown ZnO Nanostructures. Nanomaterials 7 (2017) 266
  • [56] P. K. Samanta, A. K. Bandyopadhyay, Chemical growth of hexagonal zinc oxide nanorods and their optical properties. Appl Nanosci 2 (2012) 111-117
  • [57] Y. Yao, C. Shen, W. Chen et al., Void Structures in Regularly Patterned ZnO Nanorods Grown with the Hydrothermal Method. Journal of Nanomaterials 2014 (2014) 756401
  • [58] S. Laurent, C. J. Ramos, S. Denis, Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever. R Soc Open Sci (2018) 5180510
  • [59] S. Ng, H. Sopha, R. Zazpe, Z. Spotz, V. Bijalwan, F. Dvorak, L. Hromadko, J. Prikry and J. M. Macak, TiO2 ALD Coating of Amorphous TiO2 Nanotube Layers: Inhibition of the Structural and Morphological Changes Due to Water Annealing. Front Chem 7 (2019) 38
  • [60] L. E. Brus, Electron–electron and electron‐hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys 80 (1984) 4403
  • [61] Y. Kayanuma, Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape. Physical Review B 38 (1988) 9797-9805
  • [62] Bera, L. Qian, S. Sabui, S. Santra, P. H. Holloway, Photoluminescence of ZnO quantum dots produced by a sol–gel process. Optical Materials 30 (2008) 1233-1239
  • [63] L. Ding, Y. Chen, Z. Hua et al., Preparation of ZnO quantum dots@SiO2/PVA for multifunctional coating on PET. New J Chem 44 (2020) 2122-2128
  • [64] Y. Ye, Photoluminescence property adjustment of ZnO quantum dots synthesized via sol–gel method. Journal of Materials Science: Materials in Electronics 29(6) (2018) 4967-4974
  • [65] M. A. Verges, A. Mifsud, C.J. Serna, Formation of rod-like zinc oxide microcrystals in homogeneous solutions. J Chem Soc Faraday Trans 86 (1990) 959-963
  • [66] L. Mädler, W. J. Stark, and S. E. Pratsinis, Rapid synthesis of stable ZnO quantum dots. Journal of Applied Physics 92 (2002) 6537
  • [67] A. Asok, A. R. Kulkarni, M. N. Gandhi, Microwave accelerated one-minute synthesis of luminescent ZnO quantum dots. AIP Conference Proceedings 1512 (2013) 404
  • [68] G. Jain, C. Rocks, P. Maguire, D. Mariotti, One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology 31 (2020) 215707
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.