PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 132 | 132-154
Article title

Role of gut microbiota in pathogenesis of selected chronic diseases

Content
Title variants
Languages of publication
EN
Abstracts
EN
The human digestive system is colonized by a huge number of microorganisms, that are referred to collectively as the gut microbiota. The composition of intestinal microorganisms are shaped from an early life and undergoes constant changes depending on the influence of external factors, such as: type of delivery, feeding the young child, diet in subsequent years of life, pharmaceuticals use, stress, lifestyle or infections and previous inflammation within the digestive tract. Despite transient changes in microbiota composition, the intestinal ecosystem is constantly striving to maintain homeostasis, both qualitative and quantitative, which is fundamental to human health and human development. Microbes present in the intestines are responsible for sealing the intestinal barrier, mucin production, stimulation of the angiogenesis process, supporting digestive processes by fermentation and decomposition of undigested food residues, vitamin production or protection from pathogenic microorganisms. As shown by numerous studies carried out in recent years, intestinal dysbiosis plays a fundamental role in the development of many chronic diseases such as inflammatory bowel disease, diabetes, obesity, celiac disease, connective tissue diseases and others. Insightful understanding of the interactions between microorganisms and the host organisms can provide new information about pathogenesis of diseases as well as new ways to prevent and treat intestinal or systemic disorders. The aim of this work is to review the latest reports on the role of the gastrointestinal microbiome in selected chronic diseases.
Discipline
Year
Volume
132
Pages
132-154
Physical description
Contributors
  • Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Cracow, Poland
  • Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Cracow, Poland
  • Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, 18 Czysta Str., 31-121 Cracow, Poland
References
  • [1] Sartor R.B. (2008) Microbial influences in Inflammatory Bowel Disease; Gastroenterology 134(2): 577-94
  • [2] Skonieczna-Żydecka K., Łoniewski I., Marlicz W., Karakiewicz B. Gut microbiota and its potential contribution to human emotional disorders.(2017) Med. Dosw. Mikrobiol. 69: 163-176
  • [3] Lynch S.V., Pedersen O. (2016) The Human Intestinal Microbiome in Health and Disease. N Engl J Med. 375: 2369-2379
  • [4] Krakowiak O., Nowak R. (2015) Human digestive tract microflora – significance, development, modification. Post Fitoter. 3: 193-9
  • [5] Purchiaroni F., Tortora A., Gabrielli M., Bertucci F, Gigante G, Ianiro G, Ojetti V, Scarpellini E, Gasbarrini A. (2013) The role of intestinal microbiota and the immune system. Eur Rev Med Pharmacol Sci. 17: 323-33
  • [6] Cani P.D., Rottier O., Goiot Y., Neyrinck A., Geurts L. (2008) Changes in gut microbiota control intestinal permeability-induced inflammation in obese and diabetic mice through unexpected dependent mechanisms. Diabetologia 51: S34–S35
  • [7] Bruce-Keller A.J., Salbaum J.M., Luo M. Blanchard E., Taylor C.M., Welsh D.A., Berthoud H.R. (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77: 607-15
  • [8] Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A (2011). Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11: 22
  • [9] Onderdonk A. B., Intestinal microflora and inflammatory bowel disease. WB Saunders Co., Philadelphia
  • [10] Azzouz D., Omarbekova A., Heguy A., Schwudke D., Gisch N. , Rovin B.H., Caricchio R., Buyon J.P., Alekseyenko A.V., Silverman G.J. (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis. 78(7): 947-956
  • [11] Ley R.E., Bäckhed F., Turnbaugh P., Lozupone C.A., Knight R.D., Gordon J.I..(2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA, 102: 11070-11075
  • [12] Ley R.E. 2010. Obesity and the human microbiome. Curr. Opin.Gastroenterol.26:5–11.
  • [13] Abdallah Ismail N., Ragab S.H., Abd Elbaky A., Shoeib A.R., Alhosary Y., Fekry D.(2011) Frequency of Firmicutes and Bacteroidetes in gut microbiota in obese and normal weight Egyptian children and adults. Arch Med Sci. 7(3): 501-7
  • [14] Harris K., Kassis A., Major G., Chou C.J. (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes. 2012; 879151
  • [15] Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I.. (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444(7122): 1022-1023
  • [16] Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 21; 444(7122): 1027-31
  • [17] Bäckhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 2; 101(44): 15718-23
  • [18] Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. (2005) Hostbacterial mutualism in the human intestine. Science 307(5717): 1915-1920
  • [19] Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. (2009) The efect of diet on the human gut microbiome: a meta- genomic analysis in humanized gnotobiotic mice. Sci Transl Med, 1(6): 6ra14
  • [20] Allin K.H., Nielsen T., Pedersen O. (2015) Mechanisms in Endocrinology: Gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol. 172: 167-77
  • [21] Baothman O.A., Zamzami M.A., Taher I. Abubaker J., Abu-Farha M. (2016) The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis 15: 108
  • [22] Dandona P., Aljada A., Bandyopadhyay A. (2004) Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 25: 4–7.
  • [23] Wel¬len K.E., Ho¬ta¬mi¬sli¬gil G.S. (2005) In¬flam¬ma¬tion, stress and dia¬be¬tes. J Clin In¬vest 115(5): 1111-1119
  • [24] Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., Waget A., Delmée E., Cousin B., Sulpice T., Chamontin B., Ferrières J, Tanti J.F., Gibson G.R., Casteilla L., Delzenne N.M., Alessi M.C., Burcelin R.(2007) Metabolic endotoxemia initiates obesity and insulin resistance. Dia¬be¬tes 56(7): 1761-1772
  • [25] Cani P.D., Rottier O., Goiot Y., Neyrinck A., Geurts L.(2008) Changes in gut microbiota control intestinal permeability-induced inflammation in obese and diabetic mice through unexpected dependent mechanisms. Diabetologia 5(1): 34–35
  • [26] Cani P.D., Possemiers S, Van de Wiele T., Guiot Y., Everard A., Rottier O., Geurts L., Naslain D., Neyrinck A., Lambert D.M., Muccioli G.G., Delzenne N.M. (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58: 1091–1103
  • [27] Larsen N., Vogensen F.K., van den Berg F.W., Nielsen D.S., Andreasen A.S., Pedersen B.K., etal (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2): e9085
  • [28] Salamon D., Sroka-Oleksiak A., Kapusta P., Szopa M., Mrozińska S., Ludwig-Słomczyńska A.H., Wołkow P.P., Bulanda M., Klupa T., Małecki M.T., Gosiewski T. (2018) Characteristics of gut microbiota in adult patients with type 1 and type 2 diabetes based on next generation sequencing of the 16S rRNA gene fragment. Pol Arch Intern Med. 30; 128(6): 336-343
  • [29] Brugman S, Klatter F.A, Visser J.T.J, Wildeboer-Veloo A.C.M, Harmsen H.J., Rozing J., Bos N.A. (2006) Antibiotic treatment partially protects against type 1 diabetes in the bio-breeding diabetes-prone rat. Is the gut flora involved in the development of type 1 diabetes? Diabetologia 49: 2105–2108
  • [30] Gosiewski T, Salamon D, Szopa M, Sroka A, Malecki MT, Bulanda M. (2014) Quantitative evaluation of fungi of the genus Candida in the feces of adult patients with type 1 and 2 diabetes - a pilot study. Gut Pathog, 6: 43.
  • [31] Cryan J.F., Dinan T.G. (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13: 701-12
  • [32] Foster J.A., McVey Neufeld K.A. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci 2013; 36: 305-12
  • [33] Bruce-Keller A.J., Salbaum J.M., Luo M., Blanchard E., Taylor C.M., Welsh D.A., Berthoud H.R. (2015) Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol Psychiatry 77: 607-15
  • [34] Luczynski P., Whelan S.O., O’Sullivan C., Clarke G., Shanahan F., Dinan T.G., Cryan J.F. (2016) Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci. 44: 2654-2666
  • [35] Madore C., Leyrolle Q., Lacabanne C., Benmamar-Badel A,, Joffre C., Nadjar A., Layé S. (2016) Neuroinflammation in Autism: Plausible Role of Maternal Inflammation, Dietary Omega 3, and Microbiota. Neural Plast. 2016: 3597209
  • [36] Evrensel A., Ceylan M.E. (2015) The Gut-Brain Axis: The Missing Link in Depression. Clin Psychopharmacol Neurosci 13: 239-44
  • [37] Slyepchenko A., Maes M., Jacka F.N. Barichello T., McIntyre R.S., Berk M., Grande I., Foster J.A., Vieta E., Carvalho A.F. (2017) Gut Microbiota, Bacterial Translocation,and Interactions with Diet: Pathophysiological Links between Major Depressive Disorder and Non-Communicable Medical Comorbidities. Psychother Psychosom 86: 31-46
  • [38] Adams J.B., Johansen L.J., Powell L.D., Quig D., Rubin R.A.(2011) Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterology 11(1): 22
  • [39] Kang D.W., Park J.G., Ilhan Z.E., Wallstrom G., Labaer J., Adams J.B., Krajmalnik-Brown R.(2013) Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One 3; 8(7): e68322
  • [40] Finegold S.M., Molitoris D., Song Y., Liu C., Vaisanen M.L., Bolte E., McTeague M., Sandler R., Wexler H., Marlowe E.M., Collins M.D., Lawson P.A., Summanen P., Baysallar M., Tomzynski T.J., Read E., Johnson E., Rolfe R., Nasir P., Shah H., Haake D.A., Manning P., Kaul A.(2002) Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 1; 35(Suppl 1): 6-16
  • [41] Parracho H.M., Bingham M.O., Gibson G.R., McCartney A.L. (2005) Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol 54: 987-91
  • [42] Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., Liu M., Molitoris D.R., Green J.A.(2010) Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe 16(4): 444-53
  • [43] Shaw W. (2010): Increased urinary excretion of a 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), an abnormal phenylalanine metabolite of Clostridia spp. in the gastrointestinal tract, in urine samples from patients with autism and schizophrenia. Nutr Neurosci 13(3): 135-43
  • [44] Vogt N. M., Kerby R. L., Dill-McFarland K. A., Harding S. J., Merluzzi A. P., Johnson S. C., Bendlin B. B. (2017) Gut microbiome alterations in Alzheimer’s disease. Scientific Reports 7(1), 13537
  • [45] Harach T., Marungruang, N., Duthilleul N., Cheatham V., Mc Coy K. D., Frisoni G., Bolmont, T. (2017). Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 8; 7: 41802
  • [46] Dominy S.S., Lynch C., Ermini F., Benedyk M., Marczyk A., Konradi A., Nguyen M., Haditsch U., Raha D., Griffin C., Holsinger L.J., Arastu-Kapur S., Kaba S., Lee A., Ryder M.I., Potempa B., Mydel P., Hellvard A., Adamowicz K., Hasturk H., Walker G.D., Reynolds E.C., Faull R.L.M., Curtis M.A., Dragunow M., Potempa J. (2019) Porphyromonas gingivalis in Alzheimer's disease brains: Evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv, 23; 5(1)
  • [47] Keshavarzian, A., Green, S. J., Engen, P. A., Voigt, R. M., Naqib, A., Forsyth, C. B., & Shannon, K. M. (2015). Colonic bacterial composition in Parkinson’s disease. Movement Disorders, 30(10), 1351-1360
  • [48] Unger, M. M., Spiegel, J., Dillmann, K. U., Grundmann, D., Philippeit, H., Bürmann, J., & Schäfer, K. H. (2016). Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat. Disord, 32: 66-72
  • [49] Goehler L.E, Park S.M., Opitz N., Lyte M., Gaykema R.P. (2008) Campylobacter jejuni infection increases anxiety-like behavior in the holeboard: possible anatomical substrates for viscerosensory modulation of exploratory behavior. Brain Behav Immun. 22(3): 354-66
  • [50] Bercik P., Verdu E.F., Foster J.A., Macri J., Potter M., Huang X., Malinowski P., Jackson W., Blennerhassett P., Neufeld K.A., Lu J, Khan W.I., Corthesy-Theulaz I., Cherbut C., Bergonzelli G.E., Collins S.M.. (2010) Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology, 139(6): 2102-2112
  • [51] Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J, Cryan J.F. (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38): 16050-5
  • [52] McKernan D.P., Fitzgerald P., Dinan T.G., Cryan J.F. (2010) The probiotic Bifidobacterium infantis 35624 displays visceral antinociceptive effects in the rat. Neurogastroenterol Motil, 22(9): 1029-35, e268
  • [53] Messaoudi M., Lalonde R., Violle N., Javelot H., Desor D., Nejdi A., Bisson J.F., Rougeot C., Pichelin M., Cazaubiel M., Cazaubiel J.M.. (2011) Assessment of psychotropic-like properties of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in rats and human subjects. Br J Nutr, 105(5): 755-64
  • [54] Ohland C.L., Kish L., Bell H., Thiesen A., Hotte N., Pankiv E., Madsen K.L.(2013) Effects of Lactobacillus helveticus on murine behavior are dependent on diet and genotype and correlate with alterations in the gut microbiome. Psychoneuroendocrinology, 38(9): 1738-47
  • [55] Foster J.A., McVey Neufeld K.A. (2013) Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 36: 305-12
  • [56] McCusker R.H., Kelley K.W (2013) Immune-neural connections: hot the immune system’s response to infectious agents influences behavior. J Exp Biol 1: 216: 84-98
  • [57] Sampson T.R., Debelius J.W., Thron T. Janssen S., Shastri G.G., Ilhan Z.E., Challis C., Schretter C.E., Rocha S., Gradinaru V., Chesselet M.F., Keshavarzian A., Shannon K.M., Krajmalnik-Brown R., Wittung-Stafshede P., Knight R., Mazmanian S.K. (2016) Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson’s Disease. Cell. 167: 1469-1480
  • [58] Hoban A.E., Stilling R.M., Ryan F.J. Shanahan F., Dinan T.G., Claesson M.J., Clarke G., Cryan J.F.(2016) Regulation of prefrontal cortex myelination by the microbiota. Transl Psychiatry 6: e774. 16
  • [59] Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. (2008) The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 43: 164-74
  • [60] Liang S., Wang T., Hu X., Luo J., Li W., Wu X., Duan Y., Jin F. (2015)Administration of Lactobacillus helveticus NS8 improves behavioral, cognitive, and biochemical aberrations caused by chronic restraint stress. Neuroscience. 3; 310: 561-7
  • [61] Girard S.A., Bah T.M., Kaloustian S. Lada-Moldovan L., Rondeau I., Tompkins T., Godbout R., Rousseau G. (2009) Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model. Br J Nutr, 102: 1420–5
  • [62] Gilbert K., Arseneault-Bréard J., Flores Monaco F., Beaudoin A., Bah T.M., Tompkins T.A., Godbout R., Rousseau G.(2013) Attenuation of post-myocardial infarction depression in rats by n-3 fatty acids or probiotics starting after the onset of reperfusion. Br J Nutr. 14; 109(1): 50-6
  • [63] Lyte M. (2014) Microbial endocrinology: Host‐microbiota neuroendocrine interactions influencing brain and behavior. Gut Microbes. 5: 381–389
  • [64] Wall R., Cryan J.F., Ross R.P., Fitzgerald G.F., Dinan T.G., Stanton C (2014) Bacterial neuroactive compounds produced by psychobiotics. Adv Exp Med Biol. 817: 221–239
  • [65] Stanković B., Radlović N., Leković Z., Ristić D.,Radlović V., Nikčević G., Kotur N., Vučićević K.,Kostić K.,Pavlović S.,Zukić B. (2014) HLA genotyping in pediatric celiac disease patients. Bosn J Basic Med Sci 14(3): 171–176
  • [66] Golfetto L., de Senna F.D., Hermes J., Beserra B.T.S, França F da S, Martinello F. (2014) Lower bifidobacteria counts in adult patients with celiac disease on a gluten-free diet. Arq Gastroenterol. 51(2): 139–43
  • [67] Nistal E., Caminero A., Vivas S., Ruiz de Morales J.M., Sáenz de Miera L.E., Rodríguez-Aparicio L.B. (2012) Differences in faecal bacteria populations and faecal bacteria metabolism in healthy adults and celiac disease patients. Biochimie, 94(8): 1724–9
  • [68] Primec M., Klemenak M., Di Gioia D., Aloisio I., Bozzi Cionci N., Quagliariello A., Gorenjak M., Mičetić-Turk D., Langerholc T. (2019) Clinical intervention using Bifidobacterium strains in celiac disease children reveals novel microbial modulators of TNF-α and short-chain fatty acids. Clin Nutr. 38(3): 1373-1381
  • [69] D'Argenio, V., Casaburi, G., Precone, V. Pagliuca C., Colicchio R., Sarnataro D., Discepolo V., Kim S.M., Russo I., Del Vecchio Blanco G., Horner D.S., Chiara M., Pesole G., Salvatore P, Monteleone G., Ciacci C., Caporaso G.J., Jabrì B., Salvatore F., Sacchetti L. (2016) Metagenomics reveals dysbiosis and a potentially pathogenic N flavescens strain in duodenum of adult celiac patients. Am J Gastroenterol. 111: 879–890
  • [70] Caminero A., Galipeau H.J., McCarville J.L., Johnston C.W., Bernier S.P., Russell A.K., Jury J., Herran A.R., Casqueiro J., Tye-Din J.A., Surette M.G., Magarvey N.A., Schuppan D., Verdu E.F. (2016) Duodenal Bacteria From Patients With Celiac Disease and Healthy Subjects Distinctly Affect Gluten Breakdown and Immunogenicity. Gastroenterology. 151(4): 670-83
  • [71] van Beurden Y.H., van Gils T., van Gils N.A., Kassam Z., Mulder C.J.J., Aparicio-Pagés N. (2016) Serendipity in Refractory Celiac Disease: Full Recovery of Duodenal Villi and Clinical Symptoms after Fecal Microbiota Transfer. J Gastrointestin Liver Dis. 25(3): 385–8.
  • [72] Shiga H., Kajiura T., Shinozaki J., Takagi S., Kinouchi Y., Takahashi S., Negoro K., Endo K., Kakuta Y., Suzuki M., Shimosegawa T. (2012) Changes of faecal microbiota in patients with Crohn's disease treated with an elemental diet and total parenteral nutrition. Dig Liver Dis. 44(9): 736-42
  • [73] Matricon J., Barnich N., Ardid D. (2010) Immunopathogenesis of Inflammatory Bowel Disease, Self Nonself. 1(4): 299–309
  • [74] Axelrad J.E., Olén O., Askling J., Lebwohl B., Khalili H., Sachs M.C., Ludvigsson J.F.(2019) Gastrointestinal Infection Increases Odds of Inflammatory Bowel Disease in a Nationwide Case-Control Study. Clin Gastroenterol Hepatol. 17(7): 1311-1322
  • [75] Onderdonk A. B., Intestinal microflora and inflammatory bowel disease. WB Saunders Co., Philadelphia
  • [76] Sartor R.B. (2004). Therapeutic manipulation of the enteric microflora in inflammatory bowel disease: antibiotics, probiotics and prebiotics. Gastroenterology 126: 1620-33
  • [77] Radwan P., Radwan-Kwiatek K., Skrzydło-Radomańska B. (2009). The role of enteric microflora in inflammatory bowel disease. Przeglad Gastroenterologiczny, 4(1): 1-6
  • [78] Li Y., Liu M., Zhou J., Hou B., Su X., Liu Z., Yuan J., Li M. (2019) Bacillus licheniformis Zhengchangsheng® attenuates DSS-induced colitis and modulates the gut microbiota in mice. Benef Microbes, 24: 1-12
  • [79] Wang A.Y., Popov J., Pai N. (2016) Fecal microbial transplant for the treatment of pediatric inflammatory bowel disease. Word J. Gastroenterol, 22(47): 10304–10315
  • [80] Frank D.N., St Amand A.L., Feldman R.A., Boedeker E.C., Harpaz N., Pace N.R.(2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA 104: 13780–13785
  • [81] Heidarian F., Alebouyeh M., Shahrokh S., Balaii H., Zali M.R.(2019) Altered fecal bacterial composition correlates with disease activity in inflammatory bowel disease and the extent of IL8 induction. Curr Res Transl Med, 67(2): 41-50
  • [82] Fyderek K., Strus M., Kowalska-Duplaga K., Gosiewski T., Wędrychowicz A., Jedynak-Wąsowicz A., Sładek M., Pieczarkowski S., Adamski P., Kochan P., Heczko P.B. (2009) Mucosal bacterial microflora and mucus layer thickness in adolescents with inflammatory bowel disease. World J Gastroenterol. 15: 5287-5294
  • [83] Li Q. Wang C., Tang C., He Q., Li N., Li J. (2014) Dysbiosis of gut fungal microbiota is associated with mucosal inflammation in Crohn's disease, J. Clin. Gastroenterology, 48(6): 513–523
  • [84] Krawczyk A., Sroka-Oleksiak A., Kowalska-Duplaga K., Fyderek K., Gosiewski T., Salamon D. (2018) Impact of biological treatment on intestinal microbiome in children with Crohn's disease. World Scientific News 104, 252-263
  • [85] Kowalska-Duplaga K., Krawczyk A., Sroka-Oleksiak A., Salamon D., Wędrychowicz A., Fyderek K., Gosiewski T. (2019) Dependence of Colonization of the Large Intestine by Candida on the Treatment of Crohn’s Disease. Pol J Microbiol. 68(1): 121-126
  • [86] Hoarau G., Mukherjee K., Gower-Rousseau C., Hager C., Chandra J., Retuerto M.A., Neut C., Vermeire S., Clemente J., Colombel J.F., Fujioka H., Poulain D., Sendid B., Ghannoum M.A. (2016). Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn’s Disease. Mbio 7(5), 01250-16
  • [87] Frank D.N., Amand A.L., Feldman R.A, Boedeker E.C., Harpaz N., Pace N.R. (2007) Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory disease. Proc Natl Acad Sci USA, 104(34): 13780–13785
  • [88] Ignyś I., Piątkowska P., Roszak D. (2007) Enteric microflora and inflammatory bowel disease development in children. Journal Medical Science 76(1): 59-64
  • [89] Jeyanathan M., Boutros-Tadros O., Radhi J., Semret M., Bitton A., Behr M.A. (2007) Visualization of Mycobacterium avium in Crohn’s tissue by oil-immersion microscopy. Microbes Infect. 9(14-15): 1567-73
  • [90] Frank D.N. (2008) Mycobacterium avium subspecies paratuberculosis and Crohn's disease.Lancet. Infect. Dis. 8: 345-346
  • [91] McNees A.L., Markesich D., Zayyani N.R., Graham D.Y. (2015) Mycobacterium paratuberculosis as a cause of Crohn’s disease. Expert. Rev. Gastroenterol. Hepatol, 9(12): 1523-34
  • [92] Jeyanathan M., Boutros-Tadros O., Radhi J., Semret M., Bitton A., Behr M.A.(2007) Visualization of Mycobacterium avium in Crohn’s tissue by oil-immersion microscopy. Microbes Infect, 9(14-15): 1567-73
  • [93] Szkaradkiewicz A., Chudzicka-Strugała I., Zwoździak B., Marciniak R., Wasilewska A., Drews M. (2007). Mycobacterium avium subsp. paratuberculosis in Inflammatory Bowel Disease. Przegl Epidemiol 61: 85-90
  • [94] Rathnaiah G., Zinniel D.K., Bannantine J.P., Stabel J.R., Gröhn Y.T. Collins M.T., Barletta R.G. (2017) Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne’s Disease. Front Vet Sci, 4: 187
  • [95] Rudnicka W., Molecular mechanisms of resistance to tuberculosis (2004) Post. Mikrobiol. 43(1): 107-127
  • [96] Cusick M.F., Libbey J.E., Fujinami R.S. (2012) Molecular Mimicry as a Mechanism of Autoimmune Disease. Clin Rev Allergy Immunol. 42(1): 102–111.
  • [97] Dow C.T. (2012) M. paratuberculosis Heat Shock Protein 65 and Human Diseases: Bridging Infection and Autoimmunity. Autoimmune Dis. vol. 2012: 1-7
  • [98] Dow C.T. (2011) Mycobacterium paratuberculosis and autism: Is this a trigger? Medical Hypotheses. 77: 977-981
  • [99] Miquel S., Darfeuille-Michaud A., Miquel S., Peyretaillade E. , Claret L., Vallee A., Dossat C., Vacherie B., Zineb E.H., Segurens B., Barbe V., Sauvanet P., Neut C., Colombel J.F., Medigue C., Mojica F.J.M., Peyret P., Bonnet R.(2010) Complete genome sequence of Crohn’s disease-associated adherent-invasive E. coli strain LF82. PLoS One 5(9): 1-16
  • [100] Martin H.M., Campbell B.J., Hart C.A., Mpofu C., Nayar M., Singh R., Englyst H., Williams H.F., Rhodes J.M.. (2004) Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology. 127(1): 80-93
  • [101] Martinez-Medina M., Aldeguer X., Lopez-Siles M., González-Huix F., López-Oliu C., Dahbi G., Blanco J.E., Blanco J., Garcia-Gil L.J., Darfeuille-Michaud A. (2009) Molecular diversity of Escherichia coli in the human gut: new ecological evidence supporting the role of adherent-invasive E. coli (AIEC) in Crohn's disease. Inflamm Bowel Dis. 15(6): 872-82
  • [102] Sitaraman S.V. (2005) Elevated flagellin-specific immunoglobulins in Crohn’s disease. Am. J. Physiol. Gastrointest. Liver Physiol. 288: 403–406
  • [103] Talotta R., Atzeni F., Ditto M.C., Gerardi M.C., Sarzi-Puttini P.(2017) The Microbiome in Connective Tissue Diseases and Vasculitides: An Updated Narrative Review. J Immunol Res. 6836498
  • [104] Hevia A., Milani C., López P., Cuervo A., Arboleya S., Duranti S., Turroni F., González S., Suárez A., Gueimonde M., Ventura M., Sánchez B., Margolles A.(2014) Intestinal dysbiosis associated with systemic lupus erythematosus. Mbio 5(5): e01548-14
  • [105] He Z., Shao T., Li H., Xie Z., We C.(2016) Alterations of the gut microbiome in Chinese patients with systemic lupus erythematosus. Gut Pathog, 8: 64
  • [106] Azzouz D. , Omarbekova A., Heguy A., Schwudke D., Gisch N., Rovin B.H., Caricchio R., Buyon J.P., Alekseyenko A.V., Silverman G.J. (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. BMJ Journals, Ann Rheum Dis, 78(7): 947-956.
  • [107] Lopez P., de Paz B., Rodriguez-Carrio J., Hevia A., Sanchez B., Margolles A., Suarez A. (2016) Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. 6: 24072
  • [108] Volkmann E.R., Chang Y.L., Barroso N., Furst D.E., Clements P.J., Gorn A.H., Roth B.E., Conklin J.L., Getzug T., Borneman J., McGovern D.P., Tong M., Jacobs J.P., Braun J.(2016) Association of Systemic Sclerosis With a Unique Colonic Microbial Consortium. Arthritis Rheumatol. 68(6): 1483-92
  • [109] Parodi A., Sessarego M., Greco A., Bazzica M., Filaci G., Setti M., Savarino E., Indiveri F., Savarino V., Ghio M.(2008) Small intestinal bacterial overgrowth in patients suffering from scleroderma: clinical effectiveness of its eradication. Am J Gastroenterol 103(5): 1257-62
  • [110] Marie I., Ducrotté P., Denis P., Menard J.F., Levesque H.(2009) Small intestinal bacterial overgrowth in systemic sclerosis. Rheumatology 48(10): 1314-9
  • [111] Consolandi C., Turroni S., Emmi G., Severgnini M., Fiori J., Peano C., Biagi E., Grassi A., Rampelli S., Silvestri E., Centanni M., Cianchi F., Gotti R., Emmi L., Brigidi P., Bizzaro N., De Bellis G., Prisco D., Candela M., D'Elios M.M.(2015) Behçet's syndrome patients exhibit specific microbiome signature. Autoimmun Rev. 14(4): 269-76.
  • [112] Shimizu J., Kubota T., Takada E., Takai K., Fujiwara N., Arimitsu N., Ueda Y., Wakisaka S., Suzuki T., Suzuki N. (2016) Bifidobacteria Abundance-Featured Gut Microbiota Compositional Change in Patients with Behcet's Disease. PLoS One. 11(4): e0153746
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-daf974af-ff39-44df-b2fd-f3eea8bc4a2e
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.