PL EN


Preferences help
enabled [disable] Abstract
Number of results
2017 | 80 | 284-296
Article title

On the biological response of austenitic stainless steels after electrochemical -EP and MEP- polishing

Content
Title variants
Languages of publication
EN
Abstracts
EN
The austenitic cold-rolled AISI 316L stainless steel was used for the studies. Corrosion resistance measurements were performed on the samples after three types of treatments: abrasive finishing (MP), standard electropolishing (EP), and magnetoelectropolishing (MEP). They were carried out in Ringer's solution at a room temperature, indicating a considerable difference in the breaking potential Epit values, dependent on surface treatment. Two groups of samples, those after EP and MEP, were submerged in broth culture wild strain of Escherichia coli from contaminated river water. Images of the steel samples submerged for 2 and 4 hours are displayed in the paper. A statistical approach has been performed. In each case the number of bacteria deposited on the MEP steel samples was higher in comparison with that one noticed on EP samples, increasing much faster with time on the MEP ones.
Year
Volume
80
Pages
284-296
Physical description
Contributors
  • Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, 15-17 Racławicka Str., PL 75-620 Koszalin, Poland
  • Division of Environmental Biology, Department of Waste Management, Faculty of Civil Engineering, Environment and Geodesy, Koszalin University of Technology, 2 Śniadeckich Str., PL 75-453 Koszalin, Poland
  • Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Faculty of Mechanical Engineering, Koszalin University of Technology, 15-17 Racławicka Str., PL 75-620 Koszalin, Poland
References
  • [1] Faust C.L., Electropolishing, in Electroplating and Engineering Handbook, by AK Graham, Reinhold Publishing Corporation, New Jersey, 1971.
  • [2] Hryniewicz T., Karpiński T., Łukianowicz C., The evaluation of electrolytically polished surfaces, Wear 45(3) (1977) 337-343
  • [3] Hryniewicz T., Selected problems of electropolishing (in Polish), PhD Thesis, ed. Koszalin University of Technology Publishing, 1978 (113 pages)
  • [4] Hryniewicz T., The solution of electropolishing problems for some particular cases, Surface Technology 8 (1979) 37-45
  • [5] Hryniewicz T., Skubała W., A new method for the study of potential-dependent interface characteristics for solids, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 237(2) (1987) 171-179
  • [6] Hryniewicz T., On Discrepancies between Theory and Practice of Electropolishing, Materials Chemistry and Physics 15(2) (1987) 139-154
  • [7] Hryniewicz T., Hryniewicz Z., On the solution of equation of diffusion in electropolishing, Journal of the Electrochemical Society 136(12) (1989) 3767-3769
  • [8] Hryniewicz T., Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), Monograph No. 26, ed. Koszalin University of Technology Publishing (in Polish), 1989.
  • [9] Hryniewicz T., Concept of microsmoothing in the electropolishing process, Surface and Coatings Technology 64(2) (1994) 75-80
  • [10] Hryniewicz T., On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), ed. Koszalin University of Technology Publishing House (in Polish), 2007.
  • [11] Rokicki R., Hryniewicz T., Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute of Metal Finishing 90(4) (2012) 188-196, DOI: 10.1179/0020296712Z.00000000031
  • [12] Hryniewicz T., Rokosz K., Rokicki R., Magnetoelectropolishing Process Improves Characteristics of Finished Metal Surfaces, Metal Finishing 104(12) (2006) 26-33
  • [13] Hryniewicz T., Rokicki R., Rokosz K., Magnetoelectropolishing for metal surface modification, Transactions of The Institute of Metal Finishing 85(6) (2007) 325-332
  • [14] Hryniewicz T., Rokicki R., Rokosz K., Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing, Surface and Coatings Technology 203(9) (2008) 1508-1515
  • [15] Hryniewicz T., Rokosz K., Rokicki R., Surface characterization of AISI 316L biomaterials obtained by electropolishing in a magnetic field, Surface and Coatings Technology 202(9) (2008) 1668-1673
  • [16] Hryniewicz T., Rokosz K., Rokicki R., Electrochemical and XPS Studies of AISI 316L Stainless Steel after Electropolishing in a Magnetic Field, Corrosion Science 50(9) (2008) 2676-2681; DOI:10.1016/j.corsci.2008.06.048
  • [17] Hryniewicz T., Rokicki R., Rokosz K., Corrosion Characteristics of Medical Grade AISI 316L Stainless Steel Surface after Electropolishing in a Magnetic Field, CORROSION (The Journal of Science and Engineering), Corrosion Science Section 64(8) (2008) 660-665
  • [18] Rokicki R., Hryniewicz T., Rokosz K., Modifying Metallic Implants with Magnetoelectropolishing, Medical Device and Diagnostic Industry 30(1) (2008) 102-111 (Invited Paper)
  • [19] Hryniewicz T., Rokosz K., Filippi M., Biomaterial Studies on AISI 316L Stainless Steel after Magnetoelectropolishing, Materials 2(1) (2009) 129-145, DOI: 10.3390/ma2010129
  • [20] Hryniewicz T., Rokosz K., Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing, Materials Chemistry and Physics 123(1) (2010) 47-55
  • [21] Hryniewicz T., Rokosz K., Analysis of XPS results of AISI 316L SS electropolished and magnetoelectropolished at varying conditions, Surface and Coatings Technology 204(16-17) (2010) 2583-2592
  • [22] Rokosz K., Hryniewicz T., Pitting corrosion resistance of AISI 316L SS in Ringer’s solution after magnetoelectrochemical polishing, CORROSION ( The Journal of Science and Engineering ) 66(3) (2010) 035004-1...11
  • [23] Hryniewicz T., Rokosz K., Polarization characteristics of magnetoelectropolishing stainless steels, Materials Chemistry and Physics 122(1) (2010) 169-174
  • [24] Hryniewicz T., Konarski P., Rokosz K., Rokicki R., SIMS analysis of hydrogen content in near surface layers of AISI 316L SS after electrolytic polishing under different conditions, Surface and Coatings Technology 205 (2011) 4228-4236, DOI: 10.1016/j.surfcoat.2011.03.024
  • [25] Hryniewicz T., Konarski P., Rokicki R., Valíček J., SIMS studies of titanium biomaterial hydrogenation after magnetoelectropolishing, Surface and Coatings Technology 206 (2012) 4027-4031, DOI: 10.1016/j.surfcoat.2012.03.083
  • [26] Hryniewicz T., Rokosz K., Micheli V., Auger/AES surface film measurements on AISI 316L biomaterial after magnetoelectropolishing, PAK (Measurement Automation and Monitoring) 57(6) (2011) 609-614
  • [27] Rokosz K., Hryniewicz T., Valíček J., Harničárová M., Vyležík M., Nanoindentation measurements of AISI 316L biomaterial samples after annual immersion in Ringer’s solution followed by electrochemical polishing in a magnetic field, PAK (Measurement Automation and Monitoring) 58(5) (2012) 460-463
  • [28] Rokosz K., Hryniewicz T., Raaen S., Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters, Journal of Iron and Steel Research 83(9) (2012) 910-918
  • [29] Rokosz K., Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), ed. Koszalin University of Technology Publishing House, (in Polish), 2012.
  • [30] Xiangyu Zhang, Xiaobo Huang, Yong Ma, Naiming Lin, Ailan Fan, Bin Tang, Bactericidal behavior of Cu-containing stainless steel surfaces, Applied Surface Science 258 (2012) 10058-10063
  • [31] Hryniewicz T., Rokosz K., Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial, Anti-Corrosion Methods and Materials 61(2) (2014) 57-64
  • [32] Hryniewicz T., Rokosz K., Valiček J., Rokicki R., Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial, Materials Letters 83(15) (2012) 69-72
  • [33] Gallo J., Holinka M., Moucha C.S., Antibacterial Surface Treatment for Orthopaedic Implants, International Journal of Molecular Sciences 15 (2014) 13849-13880; DOI: 10.3390/ijms150813849
  • [34] Rokosz K., Hryniewicz T., Raaen S., Cr/Fe ratio by XPS spectra of magnetoelectropolished AISI 316L SS fitted by Gaussian-Lorentzian shape lines, Tehnicki Vjesnik-Technical Gazette 21(3) (2014) 533-538, DOI: UDC/UDK 543.55:669.15:620.197.5
  • [35] Rokosz K., Hryniewicz T., Rokicki R., XPS measurements of AISI 316LVM SS biomaterial tubes after magnetoelectropolishing, Tehnicki Vjesnik-Technical Gazette 21(4) (2014) 799-805, DOI: UDC/UDK 543.55:669.15:620.197.5
  • [36] Hryniewicz T., Rokosz K., Highlights of magnetoelectropolishing, Frontiers in Materials 1(3) (2014) 1-7 (Inaugural Article); DOI: 10.3389/fmats.2014.00003
  • [37] Hryniewicz T., Rokosz K., Rokicki R., Magnetic Fields for Electropolishing Improvement: Materials and Systems, International Letters of Chemistry, Physics and Astronomy 4 (2014) 98-108, DOI: 10.18052/www.scipress.com/ILCPA.23.98
  • [38] Rokosz K., Lahtinen J., Hryniewicz T., Rzadkiewicz S., XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing, Surface and Coatings Technology 276 (2015) 516-520
  • [39] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing, Surface and Interface Analysis 47(1) (2015) 87-92
  • [40] Rokosz K., Simon F., Hryniewicz T., Rzadkiewicz S., Comparative XPS analysis of passive layers formed on AISI 304L SS after standard and very-high-current density electropolishing, Surface and Interface Analysis 47(1) (2015) 87-92, DOI: 10.1002/sia.5676
  • [41] Rokosz K., Hryniewicz T., Rzadkiewicz S., XPS study of surface layer formed on AISI 316L SS after high-current-density electropolishing, Solid State Phenomena 227 (2015) 155-158, DOI: 10.4028/www.scientific.net/SSP.227.167
  • [42] Rokosz K., Hryniewicz T., Simon F., Rzadkiewicz S., Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing, Tehnicki Vjesnik-Technical Gazette 23(3) (2016) 731-735
  • [43] Magu T.O., Bassey V.M., Nyong B.E., Obono O.E., Nzeata-Ibe N.A., Akakuru O.U., Inhibition studies of Spondias mombin L. in 0.1 HCl solution on mild steel and verification of a new temperature coefficient of inhibition efficiency equation for adsorption mechanism elucidation, World News of Natural Sciences 8 (2017) 15-26
  • [44] Ikpi M.E., Abeng F.E., Obono O.E., Adsorption and Thermodynamic Studies for Corrosion Inhibition of API 5L X-52 Steel in 2 M HCl Solution by Moxifloxacin, World News of Natural Sciences 9 (2017) 52-61
  • [45] Ikpi M.E., Abeng F.E., Okonkwo B.O., Experimental and computational study of levofloxacin as corrosion inhibitor for carbon steel in acidic media, World News of Natural Sciences 9 (2017) 79-90
  • [46] Abeng F.E., Idim V.D., Nna P.J., Kinetics and Thermodynamic Studies of Corrosion Inhibition of Mild Steel Using Methanolic Extract of Erigeron floribundus (Kunth) in 2 M HCl Solution, World News of Natural Sciences 10 (2017) 26-38
  • [47] Louis H., Japari J., Sadia A., Philip M., Bamanga A., Photochemical screening and corrosion inhibition of Poupartia birrea back extracts as a potential green inhibitor for mild steel in 0.5 M H2SO4 medium, World News of Natural Sciences 10 (2017) 95-100
  • [48] Rokosz K., Hryniewicz T., XPS Analysis of nanolayers obtained on AISI 316L SS after Magnetoelectropolishing, World Scientific News 37 (2016) 232-248
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-da61c6e6-78d8-4e5b-b0be-76c77a6d03ae
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.