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ABSTRACT 

An oblong sum labeling of a graph G = (V,E) with p vertices and q edges is a one to one function 

f:V(G) → {0,2,4,6,...} that induces a bijection f* : E(G) → {𝑂1, 𝑂2, 𝑂3,..., 𝑂𝑞} of the edges of G defined 

by f*(uv) = f(u) + f(v) for all e = uv ∈ E(G). The graph that admits oblong sum labeling is called oblong 

sum graph. In this article, the oblong sum labeling of union of some graphs are studied. 
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1.  INTRODUCTION  

 

Graphs considered in this paper are finite, undirected and simple. Let G = (V,E) be a 

graph with p vertices and q edges. A graph labeling is an assignment of integers to the vertices 

or edges or both subject to certain conditions. If the domain of the mapping is the set of vertices 

(edges/both) then the labeling is called a vertex (edge/total) labeling. Rosa [15] introduced 𝛽 − 

valuation of a graph and Golomb [5] called it as graceful labeling. There are several types of 

graph labeling and a detailed survey is found in [10]. Harary [6] introduced the notion of sum 

graph and further various sum graphs were studied in [4, 7, 9, 19, 20]. Triangular sum labeling 

was introduced in [8] and further studied in [16, 17]. The concept of oblong sum labeling was 

introduced in [12] and further studied in [14]. Labeled graphs are becoming an increasing useful 
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family of mathematical models for a broad range of applications like designing X-Ray 

crystallography, formulating a communication network addressing system, determining an 

optimal circuit layouts, problems in additive number theory etc. A systematic presentation of 

diverse applications of graph labeling is given in [1-3, 11, 18]. Following definitions are 

necessary for the present study. 

 

Definition 1.1: Let 𝑂𝑛 be the nth oblong number. An oblong sum labeling of a graph G = (V,E) 

with p vertices and q edges is a one to one function f:V(G) → {0,2,4,6,...} that induces a bijection 

f* : E(G) → {𝑂1, 𝑂2, 𝑂3,..., 𝑂𝑞} of the edges of G defined by f*(uv) = f(u)+f(v) for all e=uv ∈

 E(G). The graph that admits oblong sum labeling is called oblong sum graph.   

 

Definition 1.2: Let the graphs G1 and G2 have disjoint vertex setsV1 and V2 and edge sets E1and 

E2 respectively. Then their union G = G1UG2 is a graph with vertex set V = V1UV2 and edge set 

E = E1UE2.Clearly G1UG2 has p1+p2 vertices and q1+q2 edges. 

 

Definition 1.3: A subdivision of an edge e = uv of a graph G is the replacement of the edge e 

by a path (u,w,v). If every edge of G is subdivided exactly once, then the resulting graph is 

called the subdivision graph S(G). 

 

Definition 1.4 [13]: The bistar 𝐵𝑚,𝑛  is a graph obtained from 𝐾2 by joining m pendant edges 

to one end of 𝐾2 and n pendant edges to the other end of 𝐾2. 

 

 

2.  MAIN RESULTS 

 

Observation 2.1: There does not exist consecutive integers which are oblong numbers. 

 

Observation 2.2: There does not exist consecutive oblong numbers whose difference is two.  

 

Proof: Difference of consecutive oblong numbers is (n+1)(n+2) - n(n+1) = 2(n+1) > 2. 

 

Lemma 2.3: In every oblong sum graph G, the vertices with label 0 and 2 are always adjacent.  

 

Proof: The edge label 𝑂1 = 2 is possible only when the vertices with label 0 and 2 are adjacent. 

 

Lemma 2.4: In any oblong sum graph G, 0 and 2 cannot be the label of vertices of the same 

triangle contained in it. 

 

Proof: Let 𝑎0, 𝑎1  and 𝑎2  be the vertices of a cycle 𝑎0 and 𝑎1 are labeled with 0 and 2 

respectively and 𝑎2 is labeled with some x ∈ 𝑁, where 𝑥 ≠ 0, 𝑥 ≠ 2. Such vertex labeling will 

give rise to edge labels 2, x, and x+2. In order to admit an oblong sum labeling, x and x+2 must 

be oblong sum numbers. But it is not possible by observation 2.2. 

 

Lemma 2.5: In any oblong sum graph G, 2 and 4 cannot be the labels of the vertices of the 

same cycle in G. 
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Proof: Let 𝑎0, 𝑎1  and 𝑎2  be the vertices of a cycle 𝑎0 and 𝑎1 are labeled with 2 and 4  

respectively and 𝑎2 is labeled with some x ∈ 𝑁, where 𝑥 ≠ 2, 𝑥 ≠ 4. Such vertex labeling will 

give rise to edge labels 6, x+2 and x+4. In order to admit a oblong sum labeling, 𝑥 + 2 and 𝑥 +
4 must be oblong sum numbers which is not possible by observation 2.2. 

 

Theorem 2.6: 𝑆(𝐾1,𝑛) is oblong sum for all n ≥ 1. 

 

Proof: Let 𝑢,𝑢𝑖 , 𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛 be the vertices of 𝑆(𝐾1,𝑛) and 𝑢𝑢𝑖,𝑢𝑖𝑣𝑖, 1 ≤ 𝑖 ≤ 𝑛 be the edges 

of 𝑆(𝐾1,𝑛).  

Let 𝑓: 𝑆(𝐾1,𝑛) → {0,2,4,6, … . } be defined as follows. 

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖) = 𝑂𝑛+𝑖 − 𝑓(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑛 

Let 𝑓∗ be the induced edge labeling of  f. Then  

𝑓∗(𝑢𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖𝑣𝑖) = 𝑂𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 
 

The induced edge labels are distinct and are 𝑂1, 𝑂2, 𝑂3, … . , 𝑂2𝑛. 

Hence 𝑆(𝐾1,𝑛) is oblong sum. 

 

Example 2.7: oblong sum labeling of  𝑆(𝐾1,4) is given in Fig. 1.  

 

 
 

Fig. 1. 
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Theorem 2.8: 𝑆(𝐾1,𝑛) ∪ 𝐾1,𝑚 is oblong sum for all  𝑛, 𝑚 > 1. 

 

Proof: Let 𝑢,𝑢𝑖 , 𝑣𝑖 , 𝑤, 𝑤𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 be the vertices of 𝑆(𝐾1,𝑛) ∪ 𝐾1,𝑚 and 

𝑢𝑢𝑖,𝑢𝑖𝑣𝑖 , 𝑤𝑤𝑗, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 be the edges of 𝑆(𝐾1,𝑛) ∪ 𝐾1,𝑚.  

Let 𝑓: (𝑆(𝐾1,𝑛) ∪ 𝐾1,𝑚) → {0,2,4,6, … . } be defined as follows. 

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖) = 𝑂𝑛+𝑖 − 𝑂𝑖, 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑤) = 𝑓(𝑣𝑛−2) − 2 

𝑓(𝑤𝑗) = 𝑂2𝑛+𝑗 − 𝑓(𝑤), 1 ≤ 𝑗 ≤ 𝑚 

Let 𝑓∗ be the induced edge labeling of f. Then  

𝑓∗(𝑢𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖𝑣𝑖) = 𝑂𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑤𝑤𝑗) = 𝑂2𝑛+𝑗 , 1 ≤ 𝑗 ≤ 𝑚 

The induced edge labels are distinct and are 𝑂1, 𝑂2, 𝑂3, … . , 𝑂2𝑛+𝑚. 

Hence 𝑆(𝐾1,𝑛) ∪ 𝐾1,𝑚 is oblong sum. 

 

Example 2.9: Oblong sum labeling of 𝑆(𝐾1,4) ∪ 𝐾1,5 given in Fig. 2. 

 
Fig. 2. 

 

 

   34 

 76 

56 

98 

122 

148 



World Scientific News 145 (2020) 85-94 

 

 

-89- 

Theorem 2.10: 𝑆(𝐾1,𝑛) ∪ 𝐵𝑟,𝑠 is oblong sum for all 𝑛, 𝑟, 𝑠 > 1. 

 

Proof: Let 𝑢,𝑢𝑖 , 𝑣𝑖,𝑤, 𝑤𝑗 , 𝑥, 𝑥𝑘  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑠 be the vertices of 𝑆(𝐾1,𝑛) ∪

𝐵𝑟,𝑠 and 𝑢𝑢𝑖,𝑢𝑖𝑣𝑖,𝑤𝑤𝑗 , 𝑤𝑥, 𝑥𝑥𝑘, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑠 be the edges of 𝑆(𝐾1,𝑛) ∪

𝐵𝑟,𝑠.  

Let 𝑓: 𝑆(𝐾1,𝑛) ∪ 𝐵𝑟,𝑠 → {0,2,4,6, … . } be defined as follows. 

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖) = 𝑂𝑛+𝑖 − 𝑂𝑖, 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑤) = 𝑓(𝑣𝑛−2) − 2 

𝑓(𝑤𝑗) = 𝑂2𝑛+𝑗+1 − 𝑓(𝑤), 1 ≤ 𝑗 ≤ 𝑟 

𝑓(𝑥) = 𝑂2𝑛+1 − 𝑓(𝑤) 

𝑓(𝑥𝑘) = 𝑂2𝑛+𝑚+1+𝑘 − 𝑓(𝑥), 1 ≤ 𝑘 ≤ 𝑠 

Let 𝑓∗ be the induced edge labeling of  f. Then 

𝑓∗(𝑢𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖𝑣𝑖) = 𝑂𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑛  

𝑓∗(𝑤𝑤𝑗) = 𝑂2𝑛+𝑗+1, 1 ≤ 𝑗 ≤ 𝑟 

𝑓∗(𝑤𝑥) = 𝑂2𝑛+1 

 𝑓∗(𝑥𝑥𝑘) = 𝑂2𝑛+𝑟+1+𝑘 ,1 ≤ 𝑗 ≤ 𝑟, 1 ≤ 𝑘 ≤ 𝑠 

The induced edge labels are distinct and are 𝑂1, 𝑂2, 𝑂3, … . , 𝑂2𝑛+𝑟+𝑠+1. 
Hence 𝑆(𝐾1,𝑛) ∪ 𝐵(𝑟, 𝑠) is an oblong sum graph. 

 

Example 2.11: Oblong sum labeling of 𝐾1,3 ∪ 𝐵3,5 is given in Fig. 3. 

 

Theorem 2.12: 𝑆(𝐾1,𝑛) ∪ 𝑆(𝐾1,𝑚) is oblong sum for all 𝑛, 𝑚 > 1. 

 

Proof: Let 𝑢,𝑢𝑖 , 𝑣𝑖,𝑤, 𝑤𝑗 , 𝑥𝑗  1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 be the vertices of 𝑆(𝐾1,𝑛) ∪ 𝑆(𝐾1,𝑚) and 

𝑢𝑢𝑖,𝑢𝑖𝑣𝑖 ,𝑤𝑤𝑗 , 𝑤𝑗𝑥𝑗 , 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚 be the edges of 𝑆(𝐾1,𝑛) ∪ 𝑆(𝐾1,𝑚).  

Let 𝑓: 𝑆(𝐾1,𝑛) ∪ 𝑆(𝐾1,𝑚) → {0,2,4,6, … . } be defined as follows. 

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣𝑖) = 𝑂𝑛+𝑖 − 𝑓(𝑢𝑖), 1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑤) = 𝑓(𝑣𝑛−2) − 2 

𝑓(𝑤𝑗) = 𝑂2𝑛+𝑗 − 𝑓(𝑤), 1 ≤ 𝑗 ≤ 𝑚 

𝑓(𝑥𝑗) = 𝑂2𝑛+𝑚+𝑗 − 𝑓(𝑤𝑗), 1 ≤ 𝑗 ≤ 𝑚 



World Scientific News 145 (2020) 85-94 

 

 

-90- 

Let 𝑓∗ be the induced edge labeling of  f. Then 

𝑓∗(𝑢𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑢𝑖𝑣𝑖) = 𝑂𝑛+𝑖 ,1 ≤ 𝑖 ≤ 𝑛  

𝑓∗(𝑤𝑤𝑗) = 𝑂2𝑛+𝑗+1, 1 ≤ 𝑗 ≤ 𝑚 

 𝑓∗(𝑤𝑗𝑥𝑗) = 𝑂2𝑛+𝑚+𝑗 ,1 ≤ 𝑗 ≤ 𝑚 

The induced edge labels are distinct and are 𝑂1, 𝑂2, 𝑂3, … . , 𝑂2𝑛+2𝑚. 
Hence 𝑆(𝐾1,𝑛) ∪ 𝑆(𝐾1,𝑚) is an oblong sum graph. 

 

 
 

Fig. 3. 

 

 

Example 2.13: Oblong sum labeling of 𝑆(𝐾1,4) ∪ 𝑆(𝐾1,3) is given in Fig. 4.  

 

Theorem 2.14: 𝐾1,𝑛 ∪ 𝐵(𝑚, 𝑟) is oblong sum for all 𝑛 > 2 , 𝑚, r ≥ 1 

 

Proof: Let 𝑢, 𝑢𝑖 , 𝑣, 𝑣𝑗 , 𝑤, 𝑤𝑠, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 1 ≤ 𝑠 ≤ 𝑟  be the vertices and 

𝑢𝑢𝑖, 𝑣𝑣𝑗 , 𝑣𝑤, 𝑤𝑤𝑘, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚,1 ≤ 𝑘 ≤ 𝑟be the edges of 𝐾1,𝑛 ∪ 𝐵(𝑚, 𝑟).  

Let 𝑓: 𝑉(𝐾1,𝑛 ∪ 𝐵(𝑚, 𝑛)) → {0,2,4,6, … . } be defined as follows 

𝑓(𝑢) = 0 

𝑓(𝑢𝑖) = 𝑂𝑖 ,1 ≤ 𝑖 ≤ 𝑛 

𝑓(𝑣) = 𝑂𝑛+1 − 4 

𝑓(𝑣𝑗) = 𝑂𝑛+𝑗 − 𝑓(𝑣), 1 ≤ 𝑗 ≤ 𝑚 

𝑓(𝑤) = 𝑂𝑛+𝑗+1 − 𝑓(𝑣), 1 ≤ 𝑗 ≤ 𝑚 
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𝑓(𝑤𝑘) = 𝑂𝑛+𝑚+1+𝑘 − 𝑓(𝑤), 1 ≤ 𝑘 ≤ 𝑟 

Let 𝑓∗ be the induced edge labeling of  f. Then 

𝑓∗(𝑢𝑢𝑖) = 𝑂𝑖;1 ≤ 𝑖 ≤ 𝑛 

𝑓∗(𝑣𝑣𝑗) = 𝑂𝑛+𝑗, 1 ≤ 𝑗 ≤ 𝑚 

𝑓∗(𝑣𝑤) = 𝑂𝑛+𝑗+1, 1 ≤ 𝑗 ≤ 𝑚 

𝑓∗(𝑤𝑤𝑘) = 𝑂𝑛+𝑚+1+𝑘 ,1 ≤ 𝑘 ≤ 𝑟 

The induced edge labels are distinct and are 𝑂1, 𝑂2, 𝑂3, … . , 𝑂𝑛+𝑚+𝑟+1. 
Hence 𝐾1,𝑛 ∪ 𝐵(𝑚, 𝑛) is an oblong sum graph. 

 

 
Fig. 4. 

 

 

Example 2.15: Oblong sum labeling of 𝐾1,5 ∪ 𝐵(3,4) is given in Fig. 5. 

 

Theorem 2.16: The helm graph 𝐻𝑛 is not a oblong sum graph. 

 

Proof: Let us denote the apex vertex as𝐶1, the consecutive vertices adjacent to 𝐶1 as  

𝑣1, 𝑣2, … , 𝑣𝑛.  Let the pendant vertices adjacent to 𝑣1, 𝑣2, … , 𝑣𝑛 be 𝑢1, 𝑢2, … , 𝑢𝑛 respectively. 

Suppose, 𝐻𝑛 admits a oblong sum labeling. Suppose 𝑓 ∶ 𝑉(𝐻𝑛) → {0,2,4,6, … } be an oblong 

sum labeling.  Now there exists two cases. 

 

Case 1: Suppose 𝑓(𝐶1) = 0.  
Then according to lemma 2.3, we have to assign label 2 exactly one of the vertices from 

𝑣1, 𝑣2 … , 𝑣𝑛. Then there is a triangle having the vertices with labels 0 and 2 as adjacent vertices, 

which contradicts the lemma 2.4. 
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Case 2: Any one of the vertices from 𝑣1, 𝑣2 … , 𝑣𝑛is labeled with 0. Without loss of generality 

let us assume that 𝑓(𝑣1) = 0. Since each of the vertices from 𝑐1, 𝑣2, 𝑣𝑛, 𝑢1 is adjacent to 𝑣1, one 

of the vertices from them must be labeled with 2.  

 

Subcase 1: Suppose one of the vertices from 𝑐1, 𝑣2, 𝑣𝑛 is labeled with 2. In each possibility 

there is a triangle having two of the vertices with labels 0 and 2, which contradicts the lemma 

2.4. 

 

Subcase 2: Suppose 𝑓(𝑢1) = 2. Now, the edge label 𝑂2 = 6 can be obtained by vertex labels 

0, 6 or 2, 4. The vertex with label 2 and the vertex label 4 cannot be adjacent as 𝑢1 is a pendant 

vertex having label 2 and it is adjacent to the vertex with label 0.Therefore one of the vertices 

from 𝑣2, 𝑣𝑛, 𝑐1 must recive the label 6. Thus there is a triangle whose two of the vertices are 

labeled with 0 and 6. Let the third vertex be labeled with x, with 𝑥 ≠ 0 and 𝑥 ≠ 6. To admit a 

oblong sum labeling 𝑥, 𝑥 + 6 are two distinct oblong numbers other than 6 having difference 6, 

which is not possible. 

 

Case 3: Any one of the vertices from 𝑢1, 𝑢2, … , 𝑢𝑛  is labeled with 0. Without loss of generality, 

we may assume that 𝑓(𝑢1) = 0. Then according to lemma 2.3, 𝑓(𝑣1) = 2 . The edge label 𝑂2 =
6 can be obtained by vertex labels 0,6 or 2,4. The vertex with label 0 and the vertex with label 

6 cannot be the adjacent vertices as 𝑢1 is a pendant vertex having label 0. and it is adjacent to 

the vertex with label 2. Therefore one of the vertices from 𝑣2, 𝑣𝑛, 𝑐1 must be labelled with 6. 

Thus we have a triangle having vertices with labels 2 and 4 which contradicts the lemma 2.5. 

Thus in each of the above cases discussed above, 𝐻𝑛 is not oblong sum. 

 

 
Fig. 5. 
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3.  CONCLUSION 

 

In this paper, the authors studied the oblong sum labeling of union of some graphs, 

subdivision of a star and also proved that helm is not oblong sum. Further studies can be made 

on various graphs.  
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