Preferences help
enabled [disable] Abstract
Number of results
2017 | 74 | 238-250
Article title

Antimicrobal susceptibility pattern of methicillin resistant Staphylococcus aureus isolatetd from pediatric clinical samples at Webuye District Hospital

Title variants
Languages of publication
Methicillin Resistant Staphylococcus aureus (MRSA) is an important nosocomial pathogen causing a significant mortality and morbidity. The main objective of the study was to establish antibiotic susceptibility pattern MRSA isolated from pediatrics clinical samples at Webuye District Hospital. A total of 96 clinical samples that include blood, abscess, ear swabs, and urine and wound/pus swabs were collected by simple random techniques. These samples were cultured onto Blood agar and MacConkey agar respectively and incubated at 37oC for 24 hours. In the result 83 (86.5%) clinical samples had pure colonies of S. aureus which were identified morphologically and biochemically by standard laboratory procedures using Bergey’s Manual of Clinical Microbiology. All confirmed positive isolates were screened for MRSA whereby 18 (21.7%) were MRSA and these were subjected to susceptibility testing to common antibiotics by modified Kirby-Bauer disc diffusion method. The susceptibility was interpreted according to National Clinical laboratory Standard guidelines. From the study the prevalence of MRSA was 18 (21.7%) with the highest obtained in the wound/pus swab. Almost all MRSA was resistant to penicillin (92.8%) and cephalexin (96.6%) and amoxicillin (91%). The most effective antibiotics against the of MRSA strain were vancomycin (98.97%), ciprofloxacin (88.4%) and gentamycin (83.06%). Vancomycin was the most effective drug showed the largest inhibition zone.
Physical description
  • Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
  • Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
  • Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
  • Department of Medical Microbiology, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
  • [1] Bergey’s Manual of Systematic Bacteriology Book Review Int. J. of Syst. Bact.; July 2001, p. 408.
  • [2] Diep BA, Palazzolo-Ballance AM, Tattevin P, Basuino L, Braughton KR, Whitney AR, et al. Contribution of Panton-Valentine leukocidin in community-associated methicillin-resistant Staphylococcus aureus pathogenesis. PLoS One 2008, 3(9): e11341. doi: 10.1371/journal.pone.0003198.
  • [3] Chu H, Zhao L, Zhang Z, Gui T, Han L, Ni Y. Antibiotic resistance and molecular epidemiology of methicillin-resistant Staphylococcus aureus from lower respiratory tract: multi-resistance and high prevalence of SCCmec III type. Cell Biochem Biophys. 2013, 67(2), 795-801. doi: 10.1007/s12013-013-9542-7
  • [4] Coia J. E., Browning L., Haines L., Birkbeck T. H., Platt D. J. (1992). Comparison of enterotoxin and haemolysin produced by methicillin resistant (MRSA) and methicillin sensitive (MSSA) Staphylococcus aureus. Journal of Med. Microbial 36, 164-171
  • [5] Boyle-Vavra S., Daumg R. S., Community-acquired methicillin-resistant Staphylococcus aureus: the role of Panton-Valentine leukocidin. Lab Invest. 2007, 87(1), 3-9. doi: 10.1038/labinvest.3700501
  • [6] Guignar B.J.M., Entenza and P. Moveillon, (2005). Beta-lactamase against methicillin-resistant Staphylococcus aureus. Open pharmacol 5 (5), 479-489.
  • [7] Virdis S., Scarano C., Cossu F., Spanu V., Spanu C., De Santis EP. Antibiotic Resistance in Staphylococcus aureus and Coagulase Negative Staphylococci Isolated from Goats with Subclinical Mastitis. Vet Med Int. 2010, 517060. doi: 10.4061/2010/517060
  • [8] Udo E. E., Al-Sweih N., Dhar R, Dimitrov T. S., Mokaddas E. M., Johny M., et al. Surveillance of antibacterial resistance in Staphylococcus aureus isolated in Kuwaiti hospitals. Med. Princ. Pract. 2008, 17(1), 71-75. doi: 10.1159/000109594
  • [9] Foster T. (1996). Staphylococcus. In: Barron's Medical Microbiology (Barron S et al., eds.), 4th ed., Univ. of Texas Medical Branch.
  • [10] Centers for Disease Control and Prevention. 2011. Active Bacterial Core Surveillance Report, Emerging Infections Program Network, Methicillin-Resistant Staphylococcus aureus, 2011.
  • [11] Wylie J., Nowicki D. Molecular epidemiology of community- and health care-associated methicillin-resistant Staphylococcus aureus in Manitoba, Canada. J. Clin. Microbiol. 2005, 43, 2830-2836
  • [12] Richardson, J. F., A. H. M. Quoraishi, B. J. Francis, and R. R. Marples. 1990. Beta-lactamase-negative, methicillin-resistant Staphylococcus aureus in a newborn nursery: report of an outbreak and laboratory investigations. J. Hosp. Infect. 16, 109-121
  • [13] Gorwitz R. J., (2008). Community associated methicillin resistant: epidemiology and update. The pediatric Infect. Dis. Journal 27(10), 925-926
  • [14] Karchmer A. W., (2006). From theory to practice resistance in Staphylococcus aureus and new treatments. Clin. Microbiol. Infect. 12 (suppl. 8), 122-124
  • [15] Kern W. V., (2006). Daptomycin: First in a new class of antibiotics for complicated skin and soft tissue Infection. Int. Journ. Clin. Pract. 3, 370-378
  • [16] Khawcharoeporn T. and Alan T., (2006). Oral antibiotics treatments for methicillin-resistant Staphylococcus aureus skin and soft tissue infections: Review of literature. Hawaii Med. Journal 65, (10), 290-293.
  • [17] Davison S., Allen M., Vaughan. R. and Barker J., (2000). Staphylococcus toxin-induced T cell proliferation in atopic eczema correlate with increased use of super-antigen-reactive chain cyteassociated antigen (CLA) –positive lymphocytes. Clin. Exp. Immuno. 121, 181-186
  • [18] Gemmell C. G. (1985). The Staphylococcus, its virulence factors and polymorphonuclear leukocyte function. In Jeljaszewicz J., (Ed.). The Staphylococci zentralblatt for Bakteriologie supplement 14, Guster Fischer Verlag Stuttgard, pp. 41-50.25.
  • [19] Seifert, H. S. & DiRita, V. J., 2006. Evolution of Microbial Pathogens. Washington, D.C.: ASM Press.
  • [20] Carter W. O., Carter, P.K. Narayanan, J.P. Robinson Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J. Leukoc. Biol. 55 (1994) pp. 253-258.
  • [21] Jevon M. P. 1961. Celbenim-resistant Staphylococci. British Med. Journal 1. 124-5
  • [22] Johnson D., Molling P., Stralin K., and Soderquist B., (2004). Detection of panton-valentineleukocidin gene in Staphylococcus aureus by light cycler PCR: Clinical and epidemiological aspects. Clin. Microbiol. Infect. 10, 884-889
  • [23] Clinical and Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing. 2012.
  • [24] Bauer R. W., Kirby M. D. K., Sherris J. C., Turck M., (1966). Antibiotic susceptibility testing by standard single disc diffusion method. American Journal of Clinical Pathology 45, 493-496
  • [25] Cheesbrough M., (1992). Medical Laboratory Manual for tropical countries. 15th ed., ELBS. Britain p 11.
  • [26] Voss A., Milatovic D., Wallrauch-Schwarz C., Rosdhal T. V., Braveny I: Methicillin resistant Staphylococcus aureus in Europe. Eur. Journ. Clin. Microbiol. Infect. Dist. 1994, 13, 5055.
  • [27] Tokajian S., Haddad D., Andraos R., Hashwa F., Araj G. Toxins and Antibiotic Resistance in Staphylococcus aureus Isolated from a Major Hospital in Lebanon. ISRN Microbiol. 2011, 812049. doi: 10.5402/2011/812049
  • [28] Johnson W. M., Tyler S. D., Ewan E. P., Ashton F. E., Pollard D. R., Rozee K. R., Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 426-30
  • [29] Rijal K. R., Pahari N., Shrestha B. K., Nepal A. K., Paudel B., Mahato P, et al. Prevalence of methicillin resistant Staphylococcus aureus in school children of Pokhara. Nepal Med Coll J. 2008, 10(3), 192-195
  • [30] Młynarczyk A., Młynarczyk G., Łuczak M., Grzesik A., Lewandowska M., Jeljaszewicz J. Antibiotic resistance of Staphylococcus aureus strains isolated in two different Warsaw hospitals. Med Dosw Mikrobiol. 2001, 53
  • [31] Vahdani P., Saifi M, Aslani M. M., Asarian A. A., Sharafi K. Antibiotic resistant patterns in MRSA isolates from patients admitted in ICU and infectious ward. Tanaffos. 2004, 3(11), 37-44
  • [32] Vandenbroucke-Grauls C., Management of methicillin-resistant Staphylococcus aureus in the Netherlands. Rev. Med. Microbiol. 1998, 9, 109-116
  • [33] Magilner D., Byerly M. M., Cline D. M., (2008). The prevalence of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) in skin abscess presenting to the pediatric emergency department. North Carolina Med. Journal 69(5), 351-354
  • [34] Schito G. C., Debbia E. A., Marchese A. The evolving threat of antibiotic resistance in Europe: new data from the Alexander Project. J Antimicrob Chemother 2002, 46 (Suppl. T1), 3-9
  • [35] Vayalunkal J. V and Jardarji K., (2006). Children hospitalized with skin and soft tissue infections: a guide to antibacterial selection and treatment. Paediatric drugs. 8 (2), 99-111
  • [36] Alborzi A., Pourabbas B. A., Salehi H., Pourabbas B. H., Oboodi B., Panjehshahin M.R., Prevalence and pattern of antibiotic sensitivity of Methicillin-sensitive and Methicillin-resistant Staphylococcus aureus in Shiraz-Iran. Iranian Journal of Medical Sciences 2000, 25(1 & 2), 1-8.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.