Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 49 | 51-66

Article title

Design and Synthesis of Sulfonamides Derivatives: A Review

Content

Title variants

Languages of publication

EN

Abstracts

EN
Sulfonamides (SN) are an advisory functional group that is the basis of many drugs and thus are of great importance in medicinal and non-pharmacological chemistry. Very important methods have recently been developed for the syntheses of sulfonamides. Sulfonamides exhibit a wide range of pharmacologic activities such as anti-carbonic anhydrase and antidydropteroate synthetase. Sulfonamide derivatives offer a role in the treatment of a variety of disease states such as diarrhoea, hypoglycaemia, stasis, inflammation, and glaucoma. In this present effort, we have focused on the recent development of powerful methodologies for the synthesis of all-cell pyramids, where the -SO2NH(R) quantities have recent applications in medicine fields. This review also discusses in detail a critical view of the scope and limitations of the mechanisms and the methodology developed.

Year

Volume

49

Pages

51-66

Physical description

Contributors

  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India
author
  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India
  • Department of Chemistry, Faculty of Basic and Applied Science, Madhav University, Rajasthan, India

References

  • [1] Bentley, R. Different roads to discovery, Prontosil (hence sulfa drugs) and penicillin (hence beta-lactams). J. Ind. Microbiol. Biotechnol. 36 (2009) 775−786
  • [2] Domagk G. Ein beitrag zur chemotherapie der bakteriellen infektionen. DMW-Deutsche Medizinische Wochenschrift. 61(07) (1935) 250-3.
  • [3] Papadopoulou, M.V., Bloomer, W.D., Rosenzweig,H.R., Arena, A., et al. Nitrotriazole- and imidazole-based amides and sulfonamides as antitubercular agents. Antimicrob Agents Chemother. 58(11) (2014) 6828–6836. doi:10.1128/aac.03644-14
  • [4] Stokes S.S., Albert R., Buurman Ed T., Andrews B., Shapiro A. B., Green O. M., McKenzie A. R., Otterbein L. R.: Inhibitors of the acetyltransferase domain of N-acetylglucosamine-1-phosphate-uridylyltransferase/glucosamine- 1-phosphate acetyltransferase (GlmU). Part 2: Optimization of physical properties leading to antibacterial aryl sulfonamides. Bioorg. & Med. Chem. Lett. 22 (2022) 7019
  • [5] Chen C.H, Jiang Y, Wu R,, Tang Y, Wan C., Gao H, Mao Z. Discovery of heterocyclic substituted dihydropyrazoles as potent anticancer agents. Bioorganic & Medicinal Chemistry Letters 48 (2021) 128233. doi.org/10.1016/j.bmcl.2021.128233
  • [6] Kennedy, J.F., Thorley, M. Pharmaceutical Substances, 3rd Ed, A. Kleeman, J. Engel, B. Kutscher & D. Reichert George Thieme Verlag, Stuttgart/New York, 1999, 2286 pp., ISBN 3-13-558403-8 / 0-86577-817-5.[0pt] [Electronic Version. ISBN 3-13-115133-1 / 0-86577-818-3]. Bioseparation 8, 336 (1999). https://doi.org/10.1023/A:1008114712553
  • [7] Batra N., Agarwal D., Wadi I., Tekuri C.S., Gupta R.D., Nath M., Synthesis and antimalarial activity of 7-chloroquinoline-tethered sulfonamides and their [1,2,3]-triazole hybrids. Future Medicinal Chemistry, 14, No. 23 (2022). doi.org/10.4155/fmc-2022-0187
  • [8] Thota N. , Makam P., Rajbongshi K. K. Et al, N-Trifluoromethylthiolated Sulfonimidamides and Sulfoximines: Anti-microbial, Anti-mycobacterial, and Cytotoxic Activity. CS Med. Chem. Lett. 10 (2019) 1457–1461, doi.org/10.1021/acsmedchemlett.9b00285
  • [9] Dong J, Krasnova L, Finn MG, Sharpless KB. Sulfur(VI) fluoride exchange (SuFEx): another good reaction for click chemistry. Angew Chem Int Ed Engl. 2014 Sep 1; 53(36): 9430-48. doi: 10.1002/anie.201309399
  • [10] Wright JM, Musini VM, Gill R. First-line drugs for hypertension. Cochrane Database Syst Rev. 2018 Apr 18; 4(4): CD001841. doi: 10.1002/14651858.CD001841.pub3
  • [11] Dahlen, K., Epstein, D. L., Grant, W. M., Hutchinson, B. T., Prien, E. L., Krall, J. M. Repeated Dose-Response Study of Methazolamide in Glaucoma. Arch. Ophthalmol. 96 (1978) 2214−2218
  • [12] Uddin, M., Rao, P., Knaus, E. Design and synthesis of novel celecoxib analogues as selective cyclooxygenase-2 (COX-2) inhibitors: Replacement of the sulfonamide pharmacophore by a sulfonylazide bioisostere. Bioorg. Med. Chem. 11 (2003) 5273−5280
  • [13] Supuran CT, Casini A, Scozzafava A. Protease inhibitors of the sulfonamide type: anticancer, anti-inflammatory and antiviral agents. Med Res Rev. 23 (2003) 535–558
  • [14] Zhang, Z.-X., Willis, M. C. Sulfondiimidamides as new functional groups for synthetic and medicinal chemistry. Chem. 8 (2022) 1137-1146
  • [15] Laughlin, R. G. The synthesis and properties of aliphatic sulfonamide methylimines and bis(methylimines). J. Am. Chem. Soc. 90 (1968) 2651−2656
  • [16] Deng, X., Mani, N. S. A facile, environmentally benign sulfonamide synthesis in water, Green Chem. 8 (2006) 835–838. doi:10.1039/b606127c
  • [17] Reddy B., Abbavaram A. and Hymavathi R. V. Synthesis, Characterization and Antimicrobial Activity of Bifunctional Sulfonamide-Amide Derivatives, Journal of the Korean Chemical Society, 57, No. 6 (2013). doi.org/10.5012/jkcs.2013.57.6.731
  • [18] Pericherla V. S. Narasimha Raju, Jagan Mohana Rao Saketi et al, Synthesis of New Hispolon Derived Pyrazole Sulfonamides for Possible Antitubercular and Antimicrobial Agents., J. Mex. Chem. Soc. 65(2) (2021) 2594-0317, doi.org/10.29356/jmcs.v65i2.1458
  • [19] Deborah C. R., Joel E.M., Ashley C.G., Ann M.M., Synthesis of Vinyl Sulfonamides Using the Horner Reaction. Synthesis 15 (2023) 2321-2324. DOI: 10.1055/s-2003-41059
  • [20] K. Agrawal, T, Patel and R. Patel, Synthesis, biological activity of newly designed sulfonamide based indole derivative as anti‑microbial agent. Future Journal of Pharmaceutical Sciences 9 (17) (2023). doi.org/10.1186/s43094-023-00466-4
  • [21] Y. Ozawa, K. Kusano, T. Owa, A. Yokoi, M. Asada, K. Yoshimatsu, Cancer Chemother. Pharmacol. 69 (2012) 1353-1362. doi:10.1007/s00280-012-1844-8
  • [22] C. Pan, A. Abdukader, J. Han, Y. Cheng, C. Zhu, Ruthenium-Catalyzed C7 Amidation of Indoline C-H Bonds with Sulfonyl Azides. Chem. Eur. J. 20(13) (2014) 3606-3609. https://doi.org/10.1002/chem.201304236
  • [23] Ullah F, Zang Q, Javed S et al. Synthesis of an isoindolineannulated tricyclic sultam library via microwave-assisted, continuous-flow organic synthesis (MACOS). Synthesis 44 (2012) 2547–2554.
  • [24] He H., Wu Y.J. , Coppercatalyzed N-arylation of sulfonamides with arylbromides and iodides using microwave heating. Tetrahedron Lett. 44(16) (2003) 3385–3386, doi:10.1016/s0040-4039(03)00569-0
  • [25] Massah, A.; Kazemi, F.; Azadi, D.; Farzaneh, S.; Aliyan, H.; Naghash, H.; Momeni, A. A Mild and Chemoselective Solvent-Free Method for the Synthesis of N-Aryl and N-Alkylsulfonamides. Lett. Org. Chem. 2006, 3, 235–241, doi:10.2174/157017806775789886
  • [26] Yu, X., Liu, C., Jiang, L., Xu, Q. Manganese Dioxide Catalyzed N-Alkylation of Sulfonamides and Amines with Alcohols under Air. Org. Lett. 2011, 13, 23, 6184–6187. https://doi.org/10.1021/ol202582c
  • [27] Gioiello, A., Rosatelli, E., Teofrasti, M., Filipponi, P., Pellicciari, R. Building a sulfonamide library by eco-friendly flow synthesis. ACS Comb Sci 2013 May 13;15(5):235-9. doi: 10.1021/co400012m
  • [28] Davood Nematollahi, Fahimeh Varmaghani, Mina Saremi. Electrochemical Oxidation of 1,2-Dihydropyridazine-3,6-dione in the Presence of Arylsulfinic Acids: A Green Method for the Synthesis of New Sulfonamides. Journal of The Electrochemical Society 2013, 160 (8) , G93-G95. https://doi.org/10.1149/2.007308jes
  • [29] Tadd, A.C. Fielding, M. R., Willis, M. C. Cascade Palladium-Catalyzed Alkenyl Aminocarbonylation/ Intramolecular Aryl Amidation: An Annulative Synthesis of 2-Quinolones. Org. Lett. 2009, 11, 3, 583–586. https://doi.org/10.1021/ol802624e
  • [30] Nguyen, B.; Emmett, E. J.; Willis, M. C. Palladium-Catalyzed Aminosulfonylation of Aryl Halides. J. Am. Chem. Soc. 2010, 132, 16372. DOI: 10.1021/ja1081124
  • [31] J. Robb DeBergh, Nootaree Niljianskul, Stephen L. Buchwald. Synthesis of Aryl Sulfonamides via Palladium-Catalyzed Chlorosulfonylation of Arylboronic Acids. J. Am. Chem. Soc. 2013, 135, 29, 10638–10641. https://doi.org/10.1021/ja405949a
  • [32] Peerzada M.N., Khan P., Ahmad K., Hassan M.I., Azam A. Synthesis, characterization and biological evaluation of tertiary sulfonamide derivatives of pyridyl-indole based heteroaryl chalcone as potential carbonic anhydrase IX inhibitors and anticancer agents. Eur J Med Chem. 155 (2018) 13–23
  • [33] Fu L., Bao X., Li S, Wang L., Liu Z, Chen W, Xia Q, Liang G . Synthesis of sulfonamides from azoles and sodium sulfinates at ambient temperature. Tetrahedron, 73(17) (2017) 2504–11. doi:10.1016/j.tet.2017.03.038
  • [34] Selvakumar Dineshkumar, Ganesamoorthy Thirunarayanan, IR and NMR spectral LFER study on 3-benzoicacid based sulfonamides. World Scientific News 53(3) (2016) 367-384v
  • [35] Lakshman R. Meena, Vinay S. Sharma, Pawan Swarnkar, Synthesis and biological activity of novel sulfonamides derivatives of various heterocyclic compounds. World Scientific News 142 (2020) 120-134

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-d9a7c6b0-87d1-43ba-a8cf-e87c065a4449
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.