PL EN


Preferences help
enabled [disable] Abstract
Number of results
2019 | 116 | 230-237
Article title

The proof integral inequalities the first order by using Florkiewicz uniform method

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of this paper to get an integral inequalities Nehari’s and Pokorniy’s type with of the function and it is the first order derivatives by using the uniform method.
Discipline
Year
Volume
116
Pages
230-237
Physical description
Contributors
  • Faculty of Physics and Mathematics, Andijan State University, Andijan, Uzbekistan
author
  • Faculty of Physics and Mathematics, Andijan State University, Andijan, Uzbekistan
References
  • [1] Ahmad, I., Fink, G.A., Mahmoud, S.A. Improvements in sub-character HMM model based Arabic text recognition. In: ICFHR (2014)
  • [2] M.T Parvez and S.A Mahmoud. Offline Arabic handwritten text recognition: A survey. ACM Comput Survvol 45 no 2 pp 23-35 May 2013
  • [3] S. Azeem and H. Ahmed. Effective technique for the recognition of offline Arabic handwritten words using hidden Markov models. Int. J. Doc. Anal. Recognit. vol. 16, no. 4, pp. 399-412, 2013.
  • [4] B. Su, X. Ding, L. Peng, and C. Liu. A Novel Baseline independent Feature Set for Arabic Handwriting Recognition; in Document Analysis and Recognition (ICDAR), 12th International Conference on, 2013, pp. 1250–1254.
  • [5] C. Choisy, A. Belaïd. Apprentissage croisé en reconnaissance analytique de l’écriture manuscrite » colloque international francophone sur l’écrit et le Document 2000.
  • [6] S. Young, al., the HTK Book V3.4 Cambridge University Press, Cambridge UK, 2006 M. T. Parvez, A. M. Sabri, Arabic handwriting recognition using structural and syntactic pattern attributes. Pattern Recognition 46 (2013), pp. 141-154.
  • [7] Anne-laureBianne-Bernard, Fares Menasri, Laurence Likforman-sulem, ChaficMokbel, Christopher Kermorvant (2012) Variable length and context-dependent HMM letter form models for Arabic handwritten word recognition. In Document Recognition and Retrieval Conference (DRR)
  • [8] AL-Shatnawi, M. Atallah, AL-Salaimeh, Safwan, AL-Zawaideh, Farah Hanna, Omar, Khairuddin, Offline arabic text recognition an overview. World Comput. Sci. Inform. Technol. J. 1 (5), 184–192, 2011.
  • [9] J. H. Alkhateeb, O. Pauplin, J. Ren, J. Jiang, Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition. Knowledge-Based Systems 24 (2011), pp. 680-688.
  • [10] W. Chew, M.-S. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves. San Rafael, CA, USA: Morgan & Claypool, 2008.
  • [11] F. P. Andriulli, A. Tabacco, and G. Vecchi, “Solving the EFIE at low frequencies with a conditioning that grows only logarithmically with the number of unknowns. Antennas Propag. vol. 58, no. 5, pp. 1614–1624, May 2010.
  • [12] A. Lawgali. A Survey on Arabic Character Recognition. International Journal of Signal Processing, Image Processing and Pattern Recognition. Vol. 8, No. 2 (2015), pp. 401-426.
  • [13] Théodore Bluche, Hermann Ney, Christopher Kermorvant (2015). The LIMSI Handwriting Recognition System for the HTRtS 2014 Contest. In International Conference of Document Analysis and Recognition (ICDAR).
  • [14] J.-S. Zhao and W. C. Chew. Integral equation solution of Maxwell’s equations from zero frequency to microwave frequencies. IEEE Trans. Antennas Propag. vol. 48, no. 10, pp. 1635–1645, Oct. 2000.
  • [15] D. R. Wilton and A. W. Glisson, On improving the stability of the electric field integral equation at low frequencies, in Proc. URSI Radio Sci. Meeting, Los Angeles, CA, USA, Jun. 1981, p. 24.
  • [16] J. R. Mautz and R. Harrington. An E-field solution for a conducting surface small or comparable to the wavelength. Antennas Propag. vol. AP-32, no. 4, pp. 330–339, Apr. 2015.
  • [17] R. J. Adams, Physical and analytical properties of a stabilized electric field integral equation. Antennas Propag. vol. 52, no. 2, pp. 362–372, Feb. 2004.
  • [18] Buffa and S. Christiansen, A dual finite element complex on the barycentric refinement. Math. Comput. vol. 76, pp. 1743–1769, May 2007.
  • [19] M. Taskinen and P. Ylä-Oijala. Current and charge integral equation formulation. IEEE Trans. Antennas Propag. vol. 54, no. 1, pp. 58–67, Jan. 2006.
  • [20] D. Gope, A. Ruehli, and V. Jandhyala, Solving low-frequency EM-CKT problems using the PEEC method, IEEE Trans. Adv. Packag. vol. 30, no. 2, pp. 313–320, May 2007.
  • [21] J. AlKhateeb, H., Ren, Jinchang, Jiang, Jianmin, Al-Muhtaseb, Husni, Offline handwritten arabic cursive text recognition using hidden markov models and re-ranking, Pattern Recognition Lett. 32 (8), 1081–1088, 2011.
  • [22] S. Gasiorowicz, Quantum Physics. New York, NY, USA: Wiley, 2007.
  • [23] N. A. Demerdash, F. A. Fouad, T. W. Nehl, and O. A. Mohammed. Three dimensional finite element vector potential formulation of magnetic fields in electrical apparatus, IEEE Trans. Power App. Syst. vol. PAS-100, no. 8, pp. 4104–4111, Aug. 1981.
  • [24] P. De Doncker, A volume/surface potential formulation of the method of moments applied to electromagnetic scattering, Eng. Anal. Boundaryn Elements, vol. 27, no. 4, pp. 325–331, 2003.
  • [25] F. Vico, L. Greengard, M. Ferrando, and Z. Gimbutas, The decoupled potential integral equation for time-harmonic electromagnetic scattering. Commun. Pure Appl. Math. vol. 69, no. 4, pp. 771–812, Apr. 2016.
  • [26] W. C. Chew, Vector potential electromagnetics with generalized gauge for inhomogeneous media: Formulation (invited paper),” Prog. Electromagn. Res., vol. 149, pp. 69–84, 2014.
  • [27] Q. S. Liu, S. Sun, and W. C. Chew, A vector potential integral equation method for electromagnetic scattering. Proc. Int. Rev. Prog. Appl. Comput. Electromagn. (ACES), Mar. 2015, pp. 1–2.
  • [28] Y. Kessentini, T. Paquet, A. Ben Hamadou, Off-line handwritten word recognition using multistream hidden Markov models. Pattern Recognition Letters 31 (2010), pp. 60-70
  • [29] J. D. Jackson, Classical Electrodynamics. San Rafael, CA, USA: Morgan & Claypool, 2008
  • [30] O. Ergül and L. Gürel. The Multilevel Fast Multipole Algorithm (MLFMA) for Solving Large-Scale Computational Electromagnetics Problems. New York, NY, USA: Wiley, 2014.
Document Type
short_communication
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d90ca7a8-dfab-45e0-b85e-e165004e65f2
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.