Preferences help
enabled [disable] Abstract
Number of results
2017 | 76 | 127-139
Article title

The future of the fuel in the marine industry

Title variants
Languages of publication
The marine propulsion plants of modern commercial marine vessels are based on huge two-stroke low-speed engines, which consume very low-quality residual fuel. As a result of heavy fuel combustion, emissions of harmful (toxic) pollutants into the atmosphere, particularly sulfur oxides, occur. Consequently, such acts are subject to the laws and regulations norms governing their use in national waters, the European Union and the whole world. On the other hand, ship owners who do not comply with prescribed standards are subject to high fines and therefore the maritime economy is looking for new, cleaner sources of energy in shipbuilding. Authors based on the analysis of literature and legislation present possible solutions to the problem mentioned.
Physical description
  • Faculty of Marine Engineering, Gdynia Maritime University, 81-87 Morska Street, 81-225 Gdynia, Poland
  • Faculty of Marine Engineering, Gdynia Maritime University, 81-87 Morska Street, 81-225 Gdynia, Poland
  • [1] P. Urbański, Paliwa i smary, Fundacja WSM Gdynia (1999) 77-85.
  • [2] M. Giernalczyk, Z. Górski, Siłownie Okrętowe, Wydawnictwo Akademii Morskiej w Gdyni (2016) 61-65.
  • [3] M. H. Koziński, Załącznik VI do konwencji MARPOL, Zeszyty Naukowe Akademii Morskiej w Gdyni 92 (2015) 71-83.
  • [4] C. Sys, T. Vanelslander, M. Adriaenssens, I. Van Rillaer, International emission regulation In sea transport: economic feasibility and impast, Transportation Research Part D: Transport and Environment, Vol. 45 (2016) 139-151
  • [5] M. Rozmarynowska, Nowe przepisy IMO odnośnie do zawartości siarki w paliwie statkowym w regionie SECA i związane z tym koszty dla armatorów, Prace Wydziału Nawigacyjnego Akademii Morskiej w Gdyni Z.28 (2013) 67-74
  • [6] S. Bengtsson, K. Andersson, E. Fridell, A comparative life cycle assessment of marine fuels liquefied natural gas and three other fossil fuels, Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 225(2) (2011) 97-110
  • [7] I. Panasiuk, L. Turkina, The evaluation of investments efficiency of SOx scrubber installation, Transportation Research Part D: Transport and Environment, 40 (2015) 87-96
  • [8] P. Szynkaruk, LNG – Przyszłość Żeglugi, Folia Pomer. Univ. Technol. Stetin., Oeconomica 317(78)1 (2015) 93-100
  • [9] M. Rozmarynowska, LNG jako alternatywne paliwo dla statków- aspekty techniczne, ekologiczne, ekonomiczne i regulacyjne, Logistyka 5/2012
  • [10] W. Chądzyński, Trendy rozwoju układów napędowych gazowców LNG, ZN AM w Szczecinie, Explo-Ship 10(82) (2016) 139-150
  • [11] M. Matczak, Wykorzystanie LNG jako paliwa żeglugowego na Morzu Bałtyckim – przesłanki stosowania, Zeszyty Naukowe Uniwersytetu Szczecińskiego NR 871, Problemy Transportu i Logistyki nr 30, Szczecin 2015.
  • [12] E. Chłopińska, Problemy zastosowania paliwa niskosiarkowego na akwenie morza Bałtyckiego. Autobusy. Technika, Eksploatacja, Systemy Transportowe, nr 12/2016
  • [13] I. A. Fernández, M. R. Gómez, J. R. Gómez, L. M. López-González, H2 production by the steam reforming of excess boil off gas on LNG vessels, Energy Conversion and Management 134 (2017) 301-313
  • [14] L. E. Klebanoff, J. W. Pratt, C. B. LaFleur, Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry, International Journal of Hydrogen Energy 42(1) (2017) 757-774
  • [15] A. Alrazen Hayder, A.R. Abu Talib, R. Adnan, K.A. Ahmad, A review of the effect of hydrogen addition on the performance and emissions of the compression - Ignition engine. Renewable and Sustainable Energy Reviews 54 (2016) 785-796
  • [16] D. Cengiz, Z. Burak, Environmental and Economical Assessment of Alternative Marine Fuels, Journal of Cleaner Production 113, 02 (2016) 438-449
  • [17] Ali Can Yilmaz ,Erinclu, U dumar, Kadir Aydin, Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines. International Journal of Hydrogen Energy 35 (19) (2010) 1-7
  • [18] A. Musmar Sa'ed, A. Al-Rousan Ammar, Effect of HHO gas on combustion emissions in gasoline engines. Fuel 90 (2011) 3066-3070
  • [19] C. Naresh, Y. Sureshbabu, S. Bhargavi Devi, Performance and Exhaust Gas Analysis Of A Single Cylinder Diesel Engine Using HHO Gas (Brown’s Gas. International Journal of Engineering Research Vol. 3 Issue No: Special 1, (2014) 40-47
  • [20] P. Daszkiewicz, Badania możliwości poprawy wskaźników ekologicznych silników o zapłonie samoczynnym zasilanych paliwami konwencjonalnymi z domieszką wodoru, praca doktorska, Poznań 2014.
  • [21] M. Malinowska, Ocena możliwości zastosowania gazu Browna w okrętownictwie, Zeszyty Naukowe Akademii Morskiej w Gdyni, 91, 2015.
  • [22] P. P. Edwards, V. L. Kuznetsov, W. I. David, N. P. Brandon, Hydrogen and fuel cells: towards a sustainable energy future, Energy Policy 36 (12) (2008) 4356-4362
  • [23] C. White, R. Steeper, A. Lutz, The hydrogen-fueled internal combustion engine: a technical review, Int. J. Hydrogen Energy 31 (10) (2006) 1292-1305
  • [24] L. van Biert, M. Godjevac, K. Visser, P.V. Aravind, A review of fuel cell systems for maritime applications, Journal of Power Sources 327 (2016) 345- 364
  • [25] Cherng-Yuan Lin, Effects of Biodiesel Blend on Marine Fuel Characteristics for Marine Vessels, (2013) 4946-4952
  • [26] R. McGill, W. B. Remley, K Winther, Alternative Fuels for Marine Applications (2013) 54-55
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.