PL EN


Preferences help
enabled [disable] Abstract
Number of results
2011 | 3 | 33-41
Article title

INŻYNIERIA TKANKOWA – NOWE NARZĘDZIE W REKONSTRUKCJI TKANEK

Authors
Content
Title variants
Languages of publication
PL EN
Abstracts
EN
The loss or failure of an organ or tissue is one of the most devastating and costly problems in healthcare. Tissue engineering is a new field that applies the principles of biology, engineering and the life science in the development of functional substitutes for damaged tissue. Regeneration involves the creation of tissue identical to that which has been lost or injured. In contrast, tissue repair restores the damaged area with functional but different tissue. This approach uses two main components: cells and scaffolds. Scaffold development underpins the advancement of tissue engineering. Materials used for scaffold preparation play a major role and have found widespread biomedical applications in the development of synthetic skin substitutes, controlled drug release delivery, artificial tissue and organs, and biosensors. They have numerous advantages, such as biocompatibility, biodegradability, and anti-bacterial properties. They are safe for human use.
Keywords
Publisher

Year
Issue
3
Pages
33-41
Physical description
Contributors
author
References
  • 1. Krebs N., Advances in Cardiac Engineering and Cardiac Tissue Replacement Modalities, “Journal of Undergraduate Research”, Vol. 2, No. 1.
  • 2. Wojtowicz A., Szostak D., Malejczyk J., Tissue engineering in oral surgery – review of new methodology, „Nowa Stomatologia” 1/2002.
  • 3. Langer R., Vacante J., Tissue engineering, “Science” 260 (1993).
  • 4. Michalska M., Kozakiewicz M., Bodek K., Polimerowe nośniki czynników angiogennych. Cz. I. Membrana chitozanowo-alginianowa jako nośnik PDGF-AB i TGF-β, „Polimery w Medycynie” 2008, T. XXXVIII, Nr 4.
  • 5. Gelsea K., Poschlb E., Aigner T., Collagens – structure, function, biosynthesis, “Advanced Drug Delivery Reviews” 55 (2003).
  • 6. Ma P.X., Scaffolds for tissue fabrication, “Materials Today”, May 2004.
  • 7. Daamena W.F., Veerkampa J.H., van Hestb J.C.M., van Kuppevelt T.H., Elastin as a biomaterial for tissue engineering, “Biomaterials” 28 (2007).
  • 8. Wisowski G., Olczyk K., Koźma E.M., The influence of sorbitol on photooxidationmediated crosslinking of porcine pericardial collagen, „Biotechnologia”, 4 (71) 2005.
  • 9. Jachimowicz M., Projektowanie i wytwarzanie rusztowań stosowanych w rekonstrukcji tkanek biologicznych, LXIV, Zeszyt 4/2005.
  • 10. Ciupik L., Jędryc Ł., Kierzkowska A., Biomaterials used for DERO implants: history, present-days, future, Lfc.
  • 11. Ranger L., A new Field and its challanges, “Pharmaceutical Research”, Vol. 14, 1997.
  • 12. Tabata Y., Recent progress in tissue engineering, “DDT” Vol. 6, No. 1, January 2001.
  • 13. „Puls – Pismo Okręgowej Izby Lekarskiej w Warszawie”, Nr 2004-06.
  • 14. Nałęcz M., Biocybernetyka i inżynieria biomedyczna 2000, T. 4, Biomateriały, Akademicka Oficyna Wydawnicza EXIT, Warszawa 2003.
  • 15. Minakowski W., Weidner S., Biochemia kręgowców, Warszawa 2005.
  • 16. Kucharska M., Bocian K., Butruk B., Ciach T., Implanty kostne, „Przegląd Techniczny, Gazeta Inżynierska” 03.2008.
  • 17. Dobrzyński P., Bero M., Kasperczyk J., OPIS PATENTOWY PL 191846 B1.
  • 18. http://www.alejazdrowia.pl/product_info.php?products.
  • 19. http://www.biolog.pl/article1258.html.
  • 20. http://zschpraca.webpark.pl/podzial_bialek.htm.
  • 21. http://www.w3.aspoleczny.pl/Poliglikolid.html.
  • 22. http://biomed.brown.edu/Courses/BI108/BI108Groups/group12/TEModelLarge.jpg.
  • 23. http://www.ioi.com/.
  • 24. http://www.ibs.upm.edu.my/~aini/micrograph.htm.
  • 25. http://www.cmj.org/paper_journal/05/17/05/F051705_2.htm.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d8e1ef55-b5a0-4440-882b-a0ecfb6cdfed
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.