PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 91 | 59-72
Article title

Synthesis, Geometry optimization, Mulliken, MEP, HOMO-LUMO and NLO properties of 2-aryl-3-(2,6-diisopropylphenyl)thiazolidin-4-one based on DFT calculations

Content
Title variants
Languages of publication
EN
Abstracts
EN
A novel compounds 2-(substitutedphenyl)-3-(2,6-diisopropylphenyl)thiazolidin-4-one (8-12) were synthesized and characterized with the aid of spectral techniques. The molecular geometry of synthesized compound was calculated in the ground state by density functional theory (DFT/B3LYP) using 6-31G(d,p) basis set. The Mulliken and MEP analyses confirm the reactive sites in the designed compounds. The calculated HOMO and LUMO energies were used to analyze the charge transfer within the molecule. The electrical dipole moment (μ) and first hyperpolarizability (βo) values have been computed using DFT/B3LYP method. The higher first order hyperpolarizability of 12 found to be 1.20 x10-30 esu indicating its use as non-linear optical (NLO) material.
Year
Volume
91
Pages
59-72
Physical description
Contributors
  • Department of Chemistry, Government Arts College, Chidambaram - 608201, Tamil Nadu, India
author
  • Department of Chemistry, Government Arts College, Chidambaram - 608201, Tamil Nadu, India
References
  • [1] S. P. Singh, S. S. Parmar, K. Raman, V. I. Stenberg, Chem. Rev. 1981, 81, 175.
  • [2] F. C. Brown, Chem. Rev. 1961, 61, 463.
  • [3] Verma, S. K. Saraf, Eur. J. Med. Chem. 2008, 43, 897.
  • [4] P. Vicini, A. Gernikaki, K. Anastasia, M. Incerti, F. Zani, Bioorg. Med. Chem. 2006, 14, 3859.
  • [5] D. Pandya, K. B. Nair, Pharmazie 1993, 48, 414.
  • [6] A. Geies, E. A. Bakhite, H. S. El-Kashef, Pharmazie 1998, 53, 686.
  • [7] I. Eid, F. A. Ragab, S. L. El-Ansary, S. M. El-Gazayerly, F. E. Mourad, Arch. Pharm. 1994, 327, 211.
  • [8] O. Ates, A. Kocabalkanli, G. Sanis-Otuk, A. C. Ekinci, A. Vidin, Arzneim.-Forsch. 1997, 47, 1134.
  • [9] R. Bhat, S. Shetty, J. Indian Pharm. Sci. 1987, 194.
  • [10] J. Andres, J. J. Bronson, S. V. D. Andrea, M. S. Deshpande, P. J. Falk, K. A. Grant-Young, W. E. Harte, H. T. Ho, P. F. Misco, J. G. Robertson, D. Stock, Y. Sun, A. W. Walsh, Biorg. Med. Chem. Lett. 2000, 10, 715.
  • [11] M. Arockia doss, S. Savithiri, G. Rajarajan, V. Thanikachalam, C. Anbuselvan Spectrochim. Acta Part A, 2015, 151, 773.
  • [12] N.C. Desai, A.M. Dodiya, J. Saudi Chem. Soc. 18 (2014) 425.
  • [13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 03, Revision C.02, Gaussian Inc., Wallinford, CT, 2004.
  • [14] H.B. Schlegel, J. Comput. Chem. 1982, 3, 214.
  • [15] A.P. Scott, L. Radom, J. Phys. Chem. 1996, 100, 16502.
  • [16] V. Sangeetha, M. Govindarajan, N. Kanagathara, M.K. Marchewka, M. Drozd, G. Anbalagan, J. Mol. Struct. 2013, 1054-1055, 307.
  • [17] E. Scrocco, J. Tomasi, Adv. Quantum. Chem. 1978, 103, 115.
  • [18] V. Arjunan, P.S. Balamourougane, C.V. Mythili, S. Mohan, V. Nandhakumar, J. Mol. Struct. 2011, 1006, 247.
  • [19] N. Sundaraganesan, S. Ilakiamani, B. Dominic Joshua, Spectrochim. Acta part A, 2007, 67, 287.
  • [20] S. Savithiri, M. Arockia doss, G. Rajarajan, V. Thanikachalam, S. Bharanidharan, H. Saleem, Spectrochimica Acta Part A, 2015, 136, 782.
  • [21] S. Savithiri, M. Arockia doss, G. Rajarajan, V. Thanikachalam, J. Mol. Struct. 2014, 1075, 430.
  • [22] K. Gokula Krishnan, R. Sivakumar, V. Thanikachalam, H. Saleem, M. Arockia Doss, Spectrochimica Acta Part A, 2015, 144, 29.
  • [23] S. Savithiri, M. Arockia doss, G. Rajarajan, V. Thanikachalam, J. Mol. Struct. 2016, 1105, 225.
  • [24] K. Anandhy, M. Arockia doss, S. Savithiri, G. Rajarajan, S. Mahalakshmi, Int. J. Adv. Res. Trends Eng. Technol. 2016, 3, 1301.
  • [25] M. Arockia doss , G. Rajarajan, V. Thanikachalam, S. Selvanayagam, B. Sridhar, J. Mol. Struct. 2017, 1128, 268.
  • [26] S.R. Marder, B. Kippelen, A.K.Y. Jen, N. Peyghambarian, Nature, 1997, 388, 845.
  • [27] Y. Shi, C. Zhang, J.H. Bechtel, L.R. Dalton, B.H. Robinson, W.H. Steier, Science, 2000, 288, 119.
  • [28] M.R.S.A. Janjua, M. Amin, M. Ali, B. Bashir, M.U. Khan, M.A. Iqbal, W. Guan, L. Yan, Z.M. Su, Eur. J. Inorg. Chem. 2012, 4, 705.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d892c485-9191-44d3-9b6c-11b73ae7917b
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.