Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2023 | 46 | 30-45

Article title

A comparative study on the antioxidant efficiency of nine compounds commonly used as standards in antioxidant assays of extracts from medicinal plants and functional foods

Content

Title variants

Languages of publication

EN

Abstracts

EN
The detection of antioxidant activity in plant extracts or in pure compounds can be performed by a large number of methods with different reaction mechanisms, however, the criteria for choosing comparative standards are still not consensual. Thus, the present work intends to compare the antioxidant efficiency of nine substances, namely, gallic acid (GA), pyrogallol (PyG), propyl gallate (nPG), tannic acid (TA), quercetin (Qtn), rutin (Rut), ascorbic acid (Asc), Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid) and butyl hydroxytoluene (BHT) using methods, (1) Ferric Reducing Antioxidant Power (FRAP) Assay, (2) Ferric Reducing Power (FRP), (3) Ferric-Ferrozine Antioxidant Capacity (FFAC), (4) Total Phosphomolybdenum Antioxidant Capacity (TAC) and (5) Radical Cation Elimination Assay 2,2' Azinobis(3 Ethylbenzothiazoline 6 Sulfonic Acid) (ABTS). Antioxidant efficacy by the 1,1-diphenyl-2-picrylhydrazine free radical scavenging method was previously described in a preliminary study. The results show that the maximum effectiveness was exhibited by PyG in the ABTS (0.425 ± 0.005 µM) and TAC (0.872 ± 0.075 µM) methods, Qtn in the FRP (5.776 ± 0.020 µM) and FFAC (20.390 ± 0.291 µM) methods and GA in the FRAP (6.765 ± 0.086 µM) and DPPH (1.105 ± 0.003 µM) methods. The results found in this study reveal that the effectiveness of a standard depends on the method applied, and the antioxidant activity of the same standard may present differences between the methods, which suggests that the selection of a comparative standard for the antioxidant activity tests of the extracts of plants or functional foods must be made according to the method to be applied.

Year

Volume

46

Pages

30-45

Physical description

Contributors

  • Higher Institute of Science and Technology of Mozambique (ISCTEM), Higher School of Health Sciences, Nº 322, 1.194 Road, Maputo, Mozambique
author
  • Higher Institute of Science and Technology of Mozambique (ISCTEM), Higher School of Health Sciences, Nº 322, 1.194 Road, Maputo, Mozambique

References

  • [1] F. Shahidi, E. Capanoglu i R. Apak, Measurement of Antioxidant Activity & Capacity-Recent Trends and Applications, India: John Wiley & Sons Ltd, 2018.
  • [2] C. M. d. M. Sousa, H. R. e. Silva, G. M. Vieira-Jr, M. C. C. Ayres, C. L. S. d. Costa, D. S. Araújo, L. C. D. Cavalcante, E. D. S. Barros, P. B. d. M. Araújo, M. S. Brandão, M. H. Chaves. Fenóis totais e atividade antioxidante de cinco plantas medicinais (Total phenolics and antioxidant activity of five medicinal plants). Quim. Nova 30(2), 351-355, 2007. https://doi.org/10.1590/S0100-40422007000200021
  • [3] J. K. Moon i T. Shibamoto. Antioxidant Assays for Plant and Food Components. Journal of Agricultural and Food Chemistry 57(5), 1655-1666, 2009. https://doi.org/10.1021/jf803537k
  • [4] T. R. Augusto, E. S. S. Salinas, S. M. A. M. A. B. R. D’Arce, A. C. d. Camargo, T. M. F. d. S. Vieira. Phenolic compounds and antioxidant activity of hydroalcoholic extracts of wild and cultivated murtilla (Ugni molinae Turcz.). Food Science and Technology 34(4), 667-673, 2014, https://doi.org/10.1590/1678-457X.6393
  • [5] S. D. Banjarnahor, N. Artanti. Antioxidant properties of flavonoids. Medical Journal of Indonesia 23, 239-244, 2005
  • [6] A. Cendrowski, M. Królak S. Kalisz. Polyphenols. L-Ascorbic Acid, and Antioxidant Activity in Wines from Rose Fruits (Rosa rugosa). Molecules 2021, 26(9), 2561, https://doi.org/10.3390/molecules26092561
  • [7] R. L. Prior, X. Wu i K. Schaich. Standardized Methods for the Determination of Antioxidant Capacity and Phenolics in Foods and Dietary Supplements. Journal of Agricultural and Food Chemistry, 53, 4290-302, 2005
  • [8] F. F. Benzie i Y. T. Szeto. Total Antioxidant Capacity of Teas by the Ferric Reducing/Antioxidant Power Assay. Journal of Agricultural and Food Chemistry 47, 633–636, 1999
  • [9] F. F. Benzie i J. J. Strain. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry, 239, 70-76, 1996
  • [10] P. Prieto, M. Pineda i M. Aguilar. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry 269, 337-341, 1999
  • [11] F. Shahidi i Y. Zhong. Measurement of antioxidant activity. Journal of Functional Foods 18, 757-781, 2015
  • [12] M. Lewoyehu, M. Amare i F. Yildiz. Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food & Agriculture, 5, 24 pages, 2019
  • [13] Mekuanint Lewoyehu & Meareg Amare | Fatih Yildiz (Reviewing editor) (2019) Comparative evaluation of analytical methods for determining the antioxidant activities of honey: A review. Cogent Food & Agriculture, 5: 1, DOI: 10.1080/23311932.2019.1685059
  • [14] P. Cumbane, A. Estivila i I. Magaia. A comparative study on the antioxidant activity of Gladiolus dalenii Van Geel and nine commonly used substances to compare the antioxidant activity of foods and medicinal plants. Natural Resources Human Health 2(2), 228-235, 2022
  • [15] M. O. Jimoh, A. J. Afolayan i F. B. Lewu. Antioxidant and phytochemical activities of Amaranthus caudatus L. harvested from different soils at various growth stages. Scientific Reports 9, 14 pages, 2019
  • [16] M. E. Jemli, R. Kamal, I. Marmouzi, A. Zerrouki, Y. Cherrah i K. Alaoui, Radical-Scavenging Activity and Ferric Reducing Ability of Juniperus thurifera (L.), J. oxycedrus (L.), J. phoenicea (L.) and Tetraclinis articulata (L.). Advances in Pharmacological Sciences, 2016; 2016:6392656. doi: 10.1155/2016/6392656
  • [17] Berker, K. Güçlü, B. Demirata i R. Apak. A novel antioxidant assay of ferric reducing capacity measurement using ferrozine as the colour f orming complexation reagent. Analytical Methods 2, 1770-1778, 2010
  • [18] M. N. Alam, N. J. Bristi i M. Rafiquzzaman. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal 21, 143-152, 2013
  • [19] Yang, H. Lee, J. Sung, Y. Kim, H. S. Jeong i J. Lee. Conversion of Rutin to Quercetin by Acid Treatment in Relation to Biological Activities. Preventive Nutrition and Food Science, 24, 313-320, 2019
  • [20] R. Domitrović, H. Jakovac, V. V. Marchesi, S. Vladimir-Knežević, O. Cvijanović, Ž. Tadić, Ž. Romić i D. Rahelić. Differential hepatoprotective mechanisms of rutin and quercetin in CCl4-intoxicated BALB/cN mice. Acta Pharmacologica Sinica 33, 1260-1270, 2012
  • [21] Irshad M, Zafaryab M, Singh M, Rizvi MM. Comparative Analysis of the Antioxidant Activity of Cassia fistula Extracts. Int J Med Chem. 2012; 2012: 157125. doi: 10.1155/2012/157125
  • [22] D. Huang, B. OU i R. L. Prior. The Chemistry behind Antioxidant Capacity Assays. Agricultural and Food Chemestry, 3, 1841-1856, 2005

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-d67c37a4-382b-46a5-8be0-e994068e8210
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.