PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 95 | 193-214
Article title

The continuous bioconversion of glycerol to 1,3-PD by using encapsulated C. freundii cells

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the work was to decrease the costs of bioconversion process by using chip and simple chromatographic columns containing immobilized C. freundii cells during fermentation. The goal was also modification of medium to control of pH of process in these columns. The purpose of the study was also to ascertain the new systems of biopolymers used for encapsulation of bacterial cells. The stability of obtained membranes in different mediums has been examined. The waste glycerol conversion to 1,3-PD over continuous process has been analyzed as well. The results of the study showed that the double crosslinked alginate beads are better carriers than alginate capsules coated by chitosan during conversion of waste glycerol to 1,3-PD. Unfortunatrly these two kinds of capsules should not be used for continuous process and repeated bioconversions because of low mechanical properties of the beads. PDADMAC beads and modified (e.g. by additions) PDADMAC capsules should not be used for continuous and repeated bioconversions as well.
Year
Volume
95
Pages
193-214
Physical description
Contributors
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Janickiego Str., 71-270 Szczecin, Poland
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Janickiego Str., 71-270 Szczecin, Poland
author
  • Center of Bioimmobilisation and Innovative Packaging Materials, Faculty of Food Sciences and Fisheries, West Pomeranian University of Technology in Szczecin, 35 Janickiego Str., 71-270 Szczecin, Poland
References
  • [1] Casali S, Gungormusler M, Bertin L, Fabia F, Azbar N, Development of a biofilm technology for the production of 1,3-propanediol (1,3-PDO) from crude glycerol, Biochem Eng J, 64 (2012) 84-90
  • [2] Rossi DM, de Souza EA, Hickmann Flôres S, Záchia Ayub MA, Conversion of residual glycerol from biodiesel synthesis into1,3-propanediol by a new strain of Klebsiella pneumoniae, Renew Energ, 55 (2013) 404-409
  • [3] Drożdżyńska A, Leja K, Czaczyk K, Biotechnological production of 1,3-propanediol from crude oil, J Biotechnol, 92 (1) (2011) 92-100
  • [4] Santibáñez C, Varnero MT, Bustamante M, Residual glycerol from biodiesel manufacturing, waste or potential source of bioenergy: A Review, Chil J Agr Res 71(3) (2011) 469-475
  • [5] da Silva GP, M. Contiero MJ, Glycerol: A promising and abundant carbon source for industrial microbiology, Biotechnol Adv, 27 (2009) 30–39
  • [6] Andrade JC, Vasconcelos I, Continuous cultures of Clostridium acetobutylicum: culture stability and low-grade glycerol utilization, Biotechnol Lett 25 (2003) 121–125
  • [7] Gungormusler M, Gonen C, Azbar N, Use of ceramic-based cell immobilization to produce 1,3-propanediol from biodiesel-derived waste glycerol with Klebsiella pneumoniae, J Appl Microbiol, 111 (2011) 1138–1147
  • [8] Silva MF, Rigo D, Mossi V, Dallago RM, Henrick P, Kuhn GO, Rosa CD, Oliveira D, Oliveira JV, Treichel H, 2013, Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam, Food Bioprod Process, 91 (1) (2013) 54–59
  • [9] Górecka E, Jastrzębska M, Immobilization techniques and biopolymer carriers, Biotechnol Food Sci, 75 (1) (2011) 65-86
  • [10] Zhao YN, Chen G, Yao SJ, Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumoniae, Biochem Eng J, 32 (2006) 93–99
  • [11] Gungormusler M, Gonen C, Azbar N, Continuous production of 1,3-propanediol using raw glycerol with immobilized Clostridium beijerinckii NRRL B-593 in comparison to suspended culture, Bioprocess Biosyst Eng, 34 (2011A) 727-723
  • [12] Barbirato F, Camarasa-Claret C, Grivet JP, Bories A, 1995, Glycerol fermentation by a new 1,3-propanediol-producing microorganism: Enterobacter agglomerans, Appl Microbiol Biotechnol, 43 (1995) 786-793
  • [13] Barbirato F, Himmi EH, Conte T, Bories A, 1,3-propanediol production by fermentation: An interesting way to valorize glycerin from the ester and ethanol industries, Ind Crop Prod 7 (1998) 281–289
  • [14] Wong CL, Huang CC, Chen WM, Chang JSu, Converting crude glycerol to 1,3-propanediol using resting and immobilized Klebsiella sp. HE-2 cells, Biochem Eng J, 58-59 (2011) 177-183
  • [15] Bohlmann TJ, Schneider C, Andersen H, Buchholz R, Optimized Production of Sodium Cellulose Sulfate (NaCS) for Microencapsulation of Cell Cultures, Eng Life Sci, 10 (2002) 384 – 388.
  • [16] Sarma SJ, Pakshirajan K, Surfactant aided biodegradation of pyrene using immobilized cells of Mycobacterium frederiksbergense, Int Biodeter Biodegr 65 (2011) 73-77
  • [17] Gungormusler M, Gonen C, Ozdemir G, Azbar N, 1,3-Propanediol production potential of Clostridium saccharobutylicum NRRL B-643, New Biotechnol, 27(6) (2010) 783-788
  • [18] Chen X, Xiu Z, Wang J, Zhang D, Xu P, Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme Microb Technol, 33 (2003) 386–394
  • [19] Jun SA, Moon C, CH, Kong SW, Sang BI, Um Y, Microbial Fed-batch Production of 1,3-Propanediol Using Raw Glycerol with Suspended and Immobilized Klebsiella pneumoniae, Appl Biochem Biotechnol 161 (2010) 491–501
  • [20] Kaur G, Srivastava AK, Chand S, Advances in biotechnological production of 1,3-propanediol, Biochem Eng J, 64 (2012) 106– 118.
  • [21] Dautzenberg H, Schuldt U, Grasnick G, Karle P, Muller P, Lohr M, Pelegrin M, Piechaczyk M, Rombs KV, Gunzburg WH, Salmons B, Saller RM, Development of cellulose sulfate-based polyelectrode complex microcapsules for medical applications, Annals of the New York Academy of Sciences, 875 (1999) 46-64
  • [22] Dautzenberg H, Lukanoff B, Eckert E, Tiersch B, Schuldt U, Immobilisation of biological matter by polyelectrolyte complex formation, Ber Bunsen Phys Chem, 100 (1996) 1045-1053
  • [23] Bang SS, Pazirandeh M, Physical properties and heavy metal uptake of encapsulated Escherichia coli expressing a metal binding gene (NCP), J Microencapsul, 16 (1999), 489-499
  • [24] Mizielińska M, Bartkowiak A, Wpływ zasolenia wody na wytrzymałość i stabilność wybranych nośników hydrożelowych oraz przeżywalność komórek Pseudomonas aeruginosa. Ochrona przed korozja 9s/A (2012) 197-202
  • [25] Łukasz Łopusiewicz, Małgorzata Mizielińska. Antifungal activity of PLA foils covered with ethylocelulose containing essential oils. World News of Natural Sciences 12 (2017) 27-32
  • [26] Michał Jarosz, Patrycja Sumińska, Urszula Kowalska, Małgorzata Mizielińska. Antibacterial activity of covered paper after storage. World News of Natural Sciences 17 (2018) 141-146
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d6229aef-2b8b-4f10-8d5b-025898392d64
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.