PL EN


Preferences help
enabled [disable] Abstract
Number of results
2020 | 150 | 118-131
Article title

Multiplicative counterpart of the essentially additive Borsuk-Ulam theorem as the pivoting gateway to equidimensional paired dual reciprocal spaces

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Multiplicative counterpart of the essentially additive Borsuk-Ulam theorem is proposed as abstract guiding principle suitable for explanation of intricate mathematical – that is both operational/algebraic and structural/geometric – relationships existing between spaces of equal dimensionality forming dual multispatial structures, which comprise twin equidimensional dual reciprocal spaces. Under auspices of the multispatial reality paradigm, the multiplicatively inversive type of the Borsuk-Ulam theorem can thus be also interpreted as an interspatial pivoting gateway between paired dual reciprocal spaces.
Discipline
Year
Volume
150
Pages
118-131
Physical description
Contributors
author
  • Science/Mathematics Education Department, Southern University and A&M College, Baton Rouge, LA 70813, USA
References
  • [1] Czajko J. Flawed fundamentals of tensor calculus. World Scientific News 149 (2020) 140-165
  • [2] Suciu A. & Fries M. The Borsuk-Ulam theorem and applications presented by Alex Suciu and Marcus Fries. (2005) pp. 1-9. DOI:10.13140/RG.2.2.20061.51687
  • [3] Arora S. Topological non-constructive methods. Princeton U. Lecture 13 cos 589B (2009)
  • [4] Oleszkiewicz K. On a discrete version of the antipodal theorem. Fund. Math. 151 (1996) 189-194
  • [5] Joshi K.D. A non-symmetric generalization of the Borsuk-Ulam theorem. Fund. Math. 80 (1972) 13-30
  • [6] Joshi K.D. Infinite dimensional non-symmetric Borsuk-Ulam theorem. Fund. Math. 89 (1975) 44-50
  • [7] Cauty R. Homologie des groups et généralisations du théorème de Borsuk-Ulam. Colloq. Math. 108 (2007) 119-134
  • [8] Singh M. Parametrized Borsuk-Ulam problem for projective space bundles. Fund. Math. 211 (2011) 135-147
  • [9] Barros T.E. & Biasi C. A note on theorems of Lusternik-Schnirelmann and Borsuk-Ulam. Colloq. Math. 111(1) (2008) 35-42
  • [10] Borsuk K. Drei Sätze über die n-dimensionale euklidische Sphäre. Fund. Math. 20(1) (1933) 177-190
  • [11] Steinlein H. Borsuk-Ulam Sätze und Abbildungen mit kompakten Iterierten. Dissert. Math. 177 (1980) see pp. 8ff, 40ff, 48ff.
  • [12] Ehrlich M. A theorem of Borsuk-Ulam type for multifunctions. Fund. Math. 102 (1976) 202-208
  • [13] Biasi C. & de Mattos D. A non-standard version of the Borsuk-Ulam theorem. Bull. Pol. Ac. Sci. Math. 53(1) (2005) 111-119
  • [14] Korniłowicz A. & Riccardi M. The Borsuk-Ulam theorem. Formalized Math. 20(2) (2012) 105-112
  • [15] Baum P.F., Dąbrowski L. & Hajac P.M. Noncommutative Borsuk-Ulam-type conjectures. Banach Center Publications 106(1) (2015) 9-18
  • [16] Morley F. & Morley F.V. Inversive geometry. New York: Chelsea, 1954, pp. 39, 44.
  • [17] Bakel’man I. Ya. Inversions. Chicago: The Univ. of Chicago Press, 1974, p. 8f.
  • [18] Hille E. Analytic Function Theory I. New York: Chelsea Publishing, 1973, p. 47.
  • [19] Dieudonné J. Treatise on analysis III. New York: Academic Press, 1972, pp. 132ff, 141.
  • [20] Czajko J. On Conjugate Complex Time II: Equipotential Effect of Gravity Retrodicts Differential and Predicts Apparent Anomalous Rotation of the Sun. Chaos Solit. Fract. 11 (2000) 2001-2016
  • [21] Czajko J. Galilei was wrong: Angular nonradial effects of radial gravity depend on density of matter. Int. Lett. Chem. Phys. Astron. 30 (2014) 89-105
  • [22] Czajko J. Finegrained 3D differential operators hint at the inevitability of their dual reciprocal portrayals. World Scientific News 132 (2019) 98-120
  • [23] Czajko J. New product differentiation rule for paired scalar reciprocal functions. World Scientific News 144 (2020) 358-371
  • [24] Czajko J. Mathematical gateway to complementary hidden variables in macrophysics. Int. Lett. Chem. Phys. Astron. 50 (2015) 117-142
  • [25] Czajko J. Pairing of infinitesimal descending complex singularity with infinitely ascending, real domain singularity. World Scientific News144 (2020) 56-69
  • [26] Czajko J. Algebraic division by zero implemented as quasigeometric multiplication by infinity in real and complex multispatial hyperspaces. World Scientific News 92(4) (2018) 171-197
  • [27] Czajko J. Unrestricted division by zero as multiplication by the – reciprocal to zero – infinity. World Scientific News 145 (2020) 180-197
  • [28] Czajko J. Quaternionic operational infinity. World Scientific News 149 (2020) 23-35
  • [29] Nahin P.J. Inside interesting integrals (with an introduction to contour integration). New York: Springer, 2015, p. 14f.
  • [30] Czajko J. Complexification of operational infinity. World Scientific News 148 (2020) 60-71
  • [31] Taubes C.H. Differential geometry. Bundles, connections, metrics and curvature. Oxford: Oxford Univ. Press, 2012, pp. 60f, 62f.
  • [32] Czajko J. Operational constraints on dimension of space imply both spacetime and timespace. Int. Lett. Chem. Phys. Astron. 36 (2014) 220-235
  • [33] Czajko J. Operational restrictions on morphing of quasi-geometric 4D physical spaces. Int. Lett. Chem. Phys. Astron. 41 (2015) 45-72
  • [34] Kolata G. Topologists startled by new results. First a famous problem was solved, and now there is proof that there is more than one four-dimensional spacetime. Science 217 (1982) 432-433
  • [35] Czajko J. Dual reciprocal scalar potentials paired via differential operators in Frenet frames make the operators to act simultaneously in each of two paired 3D reciprocal spaces. World Scientific News 137 (2019) 96-118
  • [36] Vladimirov V.S. Methods of the theory of functions of many complex variables. Mineola, NY: Dover, 2007, p. 288ff.
  • [37] Morrow J. & Kodaira K. Complex manifolds. New York: Holt, Rinehart and Winston, 1971, p. 10.
  • [38] Czajko J. Quaternionic division by zero is implemented as multiplication by infinity in 4D hyperspace. World Scientific News 94(4) (2018) 190-216
  • [39] Gellert W. et al (Eds.), The VNR concise encyclopedia of mathematics. Second edition. New York: Van Nostrand Reinhold, 1989, p. 704f.
  • [40] Stroud K.A. & Booth D. Advanced engineering mathematics. New York: Industrial Press, 2003, p. 273f.
  • [41] Rudin W. Real and complex analysis. New Delhi: McGraw-Hill, 2006, p. 18f.
  • [42] Maurin K. Analysis II: Integration, distributions, holomorphic functions, tensor and harmonic analysis. Dordrecht: Reidel, 1980, p. 65.
  • [43] Cheng E. Beyond infinity. An expedition to the outer limits of mathematics. New York: Basic Books, 2017, p. 13ff.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d53b28ae-0d88-4f44-bc71-accaf85037fa
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.