Journal

Article title

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

174-192

Physical description

Contributors

author

- Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria

author

- Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria

author

- Theoretical Physics Group, Department of Physics, University of Port Harcourt, Nigeria

References

- [1] Ahmadi G. and Shahinpor M. (1974). Universal stability of magneto-micropolar fluid motions. International Journal of Engineering Science 12(7), 657-663.
- [2] Bhattacharyya S.P. and Jena S.K. (1982). On the stability of a hot layer of micropolar fluid. Int J. Engng. Sci. 21(9), 1019-1024.
- [3] Bird B.R., Stewart W.E. and Lightfoot E.N. (2005). Transport Phenomena, second edition. Wiley Publishers,
- [4] Chadrasekhar S. (1961). Hydrodynamics and hydromagnetic stability, Oxoford University Press. New York. NY. USA.
- [5] Chao-Kuang C. And Ming-Che L. (2009). Weakly nonlinear hydrodynamics stability of the thin Newtonian fluid flowing on a rotating circular distance. Mathematical Problems in Engineering 1-15.
- [6] Cogley A.C., Vincent W.G. and Gilles S.E. (1968). Differential approximation to radiative heat transfer in a non-grey gas near equilibrium. The American Inst of Aeronautic and Astronautics 6, 551-553
- [7] Das S., Guha S.K. and Chattopadhyay A. K. (2003). Theoretical analysis of stability characteristics of hydrodynamics journal bearing lubricant with micropolar fluids. Journal of Engineering Tribology 218(10), 45-56.
- [8] Dhiman J.S., Sharma P.K. And Sing G. (2011). Convective stability analysis of a micropolar fluid layer by variational method. Theoretical and Applied Mechanics Letter 1, 1-5.
- [9] Dragnomirescu F.I., Siddheshwar P.G. and Ene R.D. (2013). Influence of micropolar parameter on the stability domain in a Rayleigh-Benard convection problem. A Relaible numerical study. Italian Journal of Pure and Applied Mathematics 31, 49-62.
- [10] Hocking L. M. (1968). Theory of hydrodynamics stability. University College London. 437-469.
- [11] Kalidas, D. Wilang, S.A and Pabir, K.K. (2016). MHD micropolar fluid flow over a moving plate under slip conditions an application of Lie group analysis. UPB Sci Bull. 78(2), 225-234.
- [12] Kapitza P.L. (1949). Wave flow of thin viscous liquid film. Zhurmul Eksperimental noi I teoreticaheskoi Fiziki 18, 3-28.
- [13] Lin C.C. (1955). The theory of hydrodynamics stability. Cambridge University Press. Cambridge, UK.
- [14] Mehrjardi M.Z., Rahmatabadi A.D. and Meybodi. R.R. (2016). A study on the stability performance of noncircular lobed journal bearing with micropolar lubricant. Journal of Engineering Tribology 230(1), 14-30.
- [15] Ngiangia A., Eke P.O. And Orukari M.O. (2009). Investigation of the influence of radiation on the onset of instability of magnetohydrodyanmics (MHD) plane poiseuille flow in a porous medium. J. Vocational Education and Technology 6(1), 151-163.
- [16] Nicola L.S. (2013). Non-linear stability bounds of a horizontal layer of a porous medium with an exothermic reaction on the lower boundary. International Journal of Non-linear Mechanic 57, 163-167.
- [17] Olanrewaju P O, Okedayo G .T. and Gbadeyan J. A. (2011). Effect of thermal radiation on Magnetohydrodynamics (MHD) flow of a micropolar fluid towards a stagnation point on a vertical plate. International Journal of Applied Science and Technology 1(6), 219-230.
- [18] Othman M.I.A. and Zaki S.A. (2008). Thermal instability in a rotating micropolar viscoelastic fluid layer under the effect of electric field. Mechanics and Mechanical Engineering 12(2), 171-184.
- [19] Pu-Jen C., Chao-Kuang C. and Hsin-Yi L. (2000). Non-linear stability analysis of the thin micropolar liquid film flowing down on a vertical cylinder. J. Fluid. Eng. 123(2), 411-421.
- [20] Rafiki A., Hifdi A., Touhami M.O. And Taghavi S.M. (2013). Hydrodynamics stability of plane poiseuille flow of Non-Newtonian fluid. Journal of the Society of Rheology 42(11), 51-60.
- [21] Reena and Rana U.S. (2009). Linear stability of thermosolutal convection in a micropolor fluid saturating a porous medium. Application and Applied Mathematics: an International Journal. 4(1), 62-87.
- [22] Rusin F.W. (2012). Navier-Stokes equations stability and minimal perturbations of global solutions. Journal of Mathematical Analysis Applications 386. 115-124.
- [23] Weng H.C., Chen C.O. and Chang M. (2009). Stability of micropolar fluid flow between concentric rotating cylinders. Journal of Fluid Mechanics 631, 343-362.

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-d44495c4-f11e-487f-864f-f09121e6a47e