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ABSTRACT 

It is demonstrated here by examples that infinitesimal descending infinity is formwise analogous 

to the Cauchy integral formula. Hence the concept of total, twin operational infinity is represented by 

complex formula combining the real neverending ascending infinity and the imaginary infinitesimal 

descending infinity, each depicted in separate abstract spaces that appear as dual reciprocal, though.  
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1.  INTRODUCTION 

 

Traditional mathematics implicitly relied on single space reality (SSR) paradigm in the 

context of which geometric spaces had been identified with sets that (set-theoretically) can be 

viewed as mere selections from a single universal superset. The SSR paradigm inadvertently 

compromised some operationally legitimate differential procedures, which in turn effectively 

concealed the necessity of presence of certain abstract quasigeometric structures that could 

correspond to legitimate differential procedures, if these had been recognized.  

Therefore, the SSR paradigm should be replaced with a certain multispatial reality (MSR) 

paradigm that supports the formerly delegitimized operational procedures, presumably made in 

the past as a shoelicking attempt to stay in line with the faulty traditional ways of doing 

mathematics. Under auspices of the MSR paradigm, however, some traditional interpretations 
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of well-known and previously proven mathematical theorems and even some informal concepts 

can acquire formerly unanticipated extensions. Operational infinity is one of them.  

While the infinitesimal descending infinity frequently encountered in complex analysis 

is usually detoured, the neverending ascending infinity that pops up in many applications of 

real analysis, remains controversial and thus avoided whenever possible. I want to show by 

examples that these twin concepts can be interpreted as two faces of the same coin, namely 

complexified operational infinity. The prerequisites for this topic are [1-3]. 

Conceptual importance of infinity in mathematics is not restricted to providing 

meaningful division by zero, which I have already proposed to be performed as multiplication 

by infinity, for it also mandates corrections to some differential operators indispensable in 

physical sciences. I must use reasonings by examples because the topics to be discussed in this 

paper cannot be derived from axiomatics of traditional mathematics and thus cannot be proven 

at this present stage of theoretical development of the topics.  

Besides, the scope of validity of proofs depends on the paradigms espoused by the prover, 

some of which may seem to be so selfevident that they are often unmentioned. As paradigms 

tend to shift, however, the scope of validity of former proofs can shrink and thus some of their 

generalizations may even become inadmissible. The pathetic history of the notion of parallels 

in Euclidean geometry is an example of many futile attempts to prove the improvable and 

disheartening struggles to defend the indefensible, which amounted to fighting shadows for 

well over twenty centuries. Proofs indicate consistency of derivations, not really the validity of 

the proven theorems. And yet that trend to justify the often arbitrary postulative concepts with 

the help of shaky proofs relying on fleeting paradigms continues undaunted.  

 

 

2.  MAPPING INFINITY VIA STEREOGRAPHIC PROJECTION REVEALS  

     DIVERSE NATURE OF INFINITY 
 

Although many authors, and especially those who espoused the idea of unconventional 

division by zero [4-6], virtually presumed that just because they have implemented their 

unconventional division by zero in the complex-analytic domain of complex numbers, their 

definition of division by zero somehow inherited the infinity by default, mainly because of 

mapping of Riemann sphere the infinity seems to be inherited too. But this expectation that 

operationally meaningful infinity is indeed included in complex analysis, was an unjustified 

exaggeration (on the part of Riemann and of some of his followers) perpetuated in virtually all 

textbooks and papers on complex analysis and related topics.  

For infinity in complex-analytic framework is just a transient entity to be detoured like a 

skunk. It appears on paper and in the minds of the mathematicians who use it as tendency or 

limit in diagrams, but it cannot be really located anywhere in the realistic space of motion in 

which physical experiments take place.  

This issue intimidates the general theory of relativity (GTR) where the problem is called 

nonlocalization of energy. Therefore, the question of what the operational infinity is, and where 

it actually dwells, pertain not only to theoretical mathematics but is also of utmost significance 

to physics. Hence the concept of infinity should not be treated with almost statutory disregard 

for physics as it was often done in the past.  

Assuming that we live in a single space often identified with set – under then unspoken 

and thus unquestioned SSR paradigm – Riemann adopted stereographic projection from 
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Ptolemy [7] and in doing so he somewhat justified his inability to grasp the extra reality that is 

veiled beyond the SSR-induced reality and thus virtually hid the, extraneous to him, reality 

standing behind the visible one. Nevertheless, his visualization of infinity via mapping of sphere 

spurred investigations of dimensionality, which is his great inspirational achievement.  

Yet because Riemann assumed that dimensions can be added arbitrarily and stacked upon 

one another like bricks, just as Grassmann did, today the conceptual impact of his once 

ingenious ideas became more detrimental than motivating. Grassmann, and then Clifford, 

algebraized geometric dimensionality, but they did not really succeed in associating it with 

differentiation, which feat Riemann accomplished. However, the North pole of the Riemann’s 

sphere cannot be [unambiguously] mapped onto equatorial plane – see [8], [9] p.60, even 

though some authors depict it as if indeed it were possible [10, 11]. For adding a point at infinity 

see [12]; it apparently makes infinity an honorary member of complex numbers [13] and 

“Convergence to ∞ refers to a very special kind of divergence.” see [14] p.209, which seems 

only to deepen the confusion that traditionally surrounded the concept of infinity.  

Having said that I should mention that Elie Cartan further generalized their efforts and 

merged the geometric and algebraic trends into the method of exterior differential forms, which 

shall be discussed elsewhere, because review of the latter requires a reevaluation of Riccci’s 

tensor calculus for the discussion of exterior forms to be really enlightening.  

Some authors argue that singularities, which could harbor infinity, should be detoured 

[15]; see also the subsection discussing integrals around singularities [16]. Notice the word 

‘around’ instead of the phrase “emerging from within”, which one could rightly expect. Others 

advise that expressions like ∞+∞, ∞–∞, and ∞∙0 should be avoided for they allegedly can occur 

only as abbreviations for limiting processes, see otherwise excellent textbook [17]. Although 

this warning can surely be appreciated, we shall remember that mathematics and physical 

sciences created truly predictive, no-nonsense theories when Newton invented, and Leibniz 

simplified, differential calculus whose essence relies on estimating theoretical limits of 

previously difficult to discern mathematical expressions [18]. Note that classical approach to 

handling of singularities in some nonlinear partial differential equations, developed for the use 

in practical applications, was thoroughly exemplified in [19].  

My preliminary conclusion from these honest but conceptually somewhat misguided 

advices, is that the concept of infinity is not quite well understood. The infinity is still neither 

an operational entity nor truly structurally meaningful geometrical object even though both the 

operational and structural concepts of infinity are of crucial importance for exact sciences. 

Although infinity can be introduced either as a limit or by [postulative] convention [20] 

it was often treated as just a crutch [21, 22], and blatantly mishandled in the past, creating many 

embarrassing yet tacitly concealed operational nonsenses, some of which have been exposed in 

[23]. The previously concealed nonsenses are not really due to the allegedly paradoxical nature 

of infinity but rather stem from the postulative character of quite arbitrary, yet often 

uncontested, former assumptions of the traditional mathematics about the infinity.  

Although operational infinity is setvalued variable, at least in the set-theoretical sense of 

the term ‘infinity’, it is known that in every sufficiently small punctured neighborhood of an 

isolated essential singularity of a function f(), the range of f() omits at most one point [24].  

If so, then perhaps the omitted single point should be regarded as an abstract gateway to 

yet another space in which the singularity could be treated as truly setvalued operational entity. 

Thus, the shift from the SSR to the MSR paradigm seems implicit in the complex analysis.  
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3.  COMPLEX ANALYSIS IMPLIES MULTISPATIAL CHARACTER OF  

     DESCENDING INFINITY 

 

From Green’s formula written in complex form [25] the Cauchy’s integral theorem (CIT) 

follows: ∮ 𝑓(𝑧
 

𝐶
) 𝑑𝑧 = 0 [26], [27], [28], [29]. The conceptual meaning of Cauchy’s integral 

formula (CIF) [30] as a reciprocal counterpart of the CIT, can also be viewed as hint at the 

necessity of making shift (highlighted in red) from the SSR paradigm to the MSR paradigm  

 

 ∮
𝑓(𝑧)𝑑𝑧

𝑧−𝑧0

 

𝐶
= ∮

𝑓(𝑧)𝑑𝑧

𝑧−𝑧0

 

(𝐶−𝑧0)
+ ∮

𝑓(𝑧)𝑑𝑧

𝑧−𝑧0

 

𝐶(𝑧0)
⟹ {𝑆𝑆𝑅} ⦸ {𝑀𝑆𝑅1 ⊕ … ⊕ 𝑀𝑆𝑅𝑛 }                      (1) 

 

for it means separation of the contour C enclosing the singular point/pole z0. There (C- z0) is 

the contour without the point z0, and C(z0) is the extracted and separated contour about the point 

z0 alone; see [31-36], [37] p.91ff, or illustrated in [38]. Compare also various examples given 

in [39]. As usual, f(z) denotes a function of the complex variable z. The right-hand side (RHS) 

of the implication (1) is the reinterpretation of the CIF under the MSR paradigm. The MSRn in 

(1) denotes the nth separate singular space integral.  

The CIF effectively demands separation of the primary domain within the contour C from 

the extracted domain surrounding the singular point z0. CIF, as the counterpart of the CIT with 

reciprocal point singularity virtually demands separation of the singular point. The nonsingular 

contour corresponds to the SSR paradigm whereas the MSR paradigm covers the extracted 

contour enclosing the singular points turned into paired dual reciprocal spaces in the MSR 

setting. There the interspatial addition sign ⊕ means additive composition whereas the 

interspatial subtraction sign ⦸ means there that the singular MSR part of CIF is still evaluated 

in the SSR setting. Thus, the need to shift the SSR paradigm to the MSR paradigm is implicit 

in the CIF. Compare also the Poisson integral formula, which is defined on unit disk (0,1) in 

[40]. Recall that in the analogous Cauchy-Goursat theorem: ∮ 𝑓(𝑧
 

𝐶=𝜕𝑂
) 𝑑𝑧 = 0  the contour C 

is also the boundary 𝜕O of the rectangle O, compare [41].  

The traditional complex-analytic formulation of the CIF remains unchanged under the 

MSR paradigm but the newly acquired reinterpretation of its prospective multispatial meaning 

is far more comprehensive, for in the MSR framework the complex analysis appears as a 

simplified theory of multispatial geometric structures squeezed into essentially planar 2D 

algebraic setting, which is clearly incomplete in 3D or in higher-dimensional framework.  

The MSR paradigm does not defy complex analysis but makes it viable both operationally 

and – especially – structurally. Thus, if the separation facilitated by the CIF would be abstracted 

into a higher-dimensional hypercomplex domain then it could mean associating (or pairing in 

the new MSR parlance) the secondary dual reciprocal spaces with the primary hypercomplex 

space, in which case the imaginary unit i becomes an algebraic interspatial operator to be 

denoted here by î, or the geometric multispatial operator 𝑖 whose imaginary value is equal: 

|î| =|𝑖| = |i| = √(-1). This imaginary symbol î is used in an algebraic/operational context whereas 

𝑖  can be applied in a geometric/structural context, respectively.  

In order to pursue and implement the hint implicit in the CIF a conceptual shift from the 

SSR paradigm to the MSR paradigm is necessary also for the sake of maintaining algebraic 

consistency of operations. Recall that continuous deformation of the contour does not affect or 

alter the integral if the singularity of the integrand is not crossed [42], which fact also demands 

a separate space for the singularity to dwell in, in compliance with fundamental tenets of  
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the MSR paradigm. For CIT is inapplicable when the contour encloses singularities of the 

function f(z) [43], which fact also hints at feasibility of the multispatial approach that is offered 

here. For an intuitive approach to CIT and contour deformations (or homotopy) see [44-48], or 

an other standard textbook of complex analysis.  

In the traditional SSR setting the integral is evaluated without the singular point/pole, 

whereas in the MSR setting the singular integral could be evaluated also within the extra space 

that either houses the structural infinity (or just hosts the separated singular point when the 

unconventional division by zero is conceptually inapplicable there despite the quite unrealistic 

expectation that infinity is somehow inherited along with the complex numbers domain). For 

the complex analysis effectively shuns the infinity and routinely detours it. The traditional 

presentations of these and some related topics can be found in [49, 50].  

Nevertheless, it is evident that the setvalued infinity could not be depicted directly in the 

very same primary space in which the singlevalued zero dwells and that is the chief reason for 

having multiple spaces, which is the fundamental tenet of the MSR framework.  

 

 

4.  COMPLEXIFIED OPERATION OF MULTIPLICATION BY ∞ THAT IS  

     EQUATED WITH DIVISION BY 0  

 

I have already proposed an algebraic multiplication of positive integer n by neverending 

ascending infinity as compound algebraic-differential operation that is equivalent to an 

algebraic division of the integer n by real zero, which, in general, should yield the expression  

 

 𝑁𝑛↑
𝑛·∞ ≔ 𝑛 ∙ ∞ =

n

0
≕ 𝑁𝑛↑

𝑛/0
⇔ ∑ {[∫ 𝑡𝑣′([𝑥], 𝑡)𝑑𝑡]

∞

1
|𝑛

0 ȸ ⊕ [∫  [
1

𝑣′([𝑥],𝑡)𝑑𝑡

1

0
]] |ȹ}                  (2) 

 

which is definitely unrestricted operation, see [1]. The discrete multistage sum formula (2) is 

operationally similar to adding the primary integral that resembles formwise incomplete elliptic 

integral of the second kind to the paired inverted integral that resembles incomplete elliptic 

integral of the first kind, respectively, compare [2, 3]. Because of its apparent similarity to the 

formula (1), the far RHS of the formula (2) seemingly begs for rendering the whole formula (2) 

also in complex analytic form. The symbol ȸ stands for the homogeneous primary algebraic 

3D basis and ȹ denotes the homogeneous 3D inverse/reciprocal basis.  

Identifying the ascending infinity with natural inverse of zero, so that  𝑛 ∙ ∞ =
n

0
   and the 

resulting from that identification indirect justification of the fact that 0 ∙ ∞ = 1  or even their 

selfevident divisions, such as  
0

0
=

∞

∞
= 1  is not entirely new, but it was rather deliberately 

avoided and usually advised to take first their logarithms – see [51], as the SSR paradigm is 

unsuitable for any truly meaningful direct algebraic operations on infinity. Yet in the MSR 

setting one may operate on the real ascending infinity directly – see [3, 52, 53]. Recall that the 

clear equivalence  
0

0
=

∞

∞
= 1  used as steppingstone for the conventional division by zero 

complies with the logically obvious intuition that dividing any entity by itself must yield unity. 

The symbol ⊕ denotes composition implemented through an interspatial addition, which 

is different than the regular addition because the reciprocal term on the RHS of (2) cannot be 

quite meaningfully represented within the very same primary space [1, 3]. Because 

multiplication by ascending infinity designates a point at infinity with respect to the positive 
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integer n and to the influence function v(x,t) – as it is sometimes called in the theory of integral 

kernels [54] – the operation (2) can be denoted in shorthand notation as 𝑁𝑛↑
𝑛·∞ ≔ 𝑛 ∙ ∞ =

n

0
≕

𝑁𝑛↑
𝑛/0

 by analogy to the point at infinity that is conventionally denoted by  𝐴∞
0  when it is used 

in reference to affine spaces [55] p.28. The up arrow that follows the integer n>0 signifies the 

fact that the integer variable n is progressing upwards n = 1,2,3…  

The resulting two integrals on the RHS of (2) are formwise equivalent just as the 

preliminary conceptual evaluation of the intuitively selfevident informal symbolic implication  

 

 ∞+∞=2∙∞ ⇒ 2/0                (3) 

 

seems to suggest. Their interspatial equivalence has been operationally confirmed in [2] after 

being conceptually introduced and already theoretically prepared in [3].  

By analogy to operations on complex functions in conjunction with the Cauchy integral 

formula that is usually dubbed as CIF, one can see that the interspatial addition symbol ⊕ could 

also be used with the imaginary operator 𝑖̂ because it virtually does split the formula (2) into as 

if multiple discrete stages of real and imaginary parts. Hence, I could rewrite (2) as  

 

 𝑁𝑛↑
𝑛·∞ ≔ 𝑛 ∙ ∞ =

n

0
≕ 𝑁

𝑛↑

𝑛

0 ⟹ ∑ {[∫ 𝑡𝑣′([𝑥], 𝑡)𝑑𝑡]
∞

1
|𝑛

0 ȸ ⊕ 𝑖̂ [∫  [
1

𝑣′([𝑥],𝑡)𝑑𝑡

1

0
]] |

ȹ

i
  }              (4) 

 

in the complex analytic form, but as an implication to be justified elsewhere rather than as the 

equivalence appearing in (2). For at the present stage of the development of the topic the 

supposition (4) is not yet operationally warranted. Having said that, I shall respectfully mention 

that I am not really interested in ever proving an equivalence even if it would were possible, for 

the implication (4) reveals much more unanticipated features of feasibility of this unrestricted 

division by zero than the essentially algebraic operation alone entails.  

The form of the compound nondenominated algebraic operator  𝑖̂|
ȹ

i
  is chosen on purpose 

for the sake of simplicity. For it preserves the inverse algebraic basis ȹ, so that the integral that 

stands by the – nondescript, at this stage of development of the present topic – algebraic operator 

𝑖̂|
ȹ

i
  yields the integral’s magnitude taken in the direction of the imaginary unit vector i that 

corresponds to the imaginary algebraic unit operator î as well as to the imaginary geometric 

unit operator 𝑖, of course, so that in  terms of values we have |î| =|𝑖| = |i| = √(-1). For if I would 

have chosen a denominated operator instead, as scalar product of the imaginary units, for 

instance, then our discussion here would require also some introduction to the spaces in which 

the operators operate on the functions, which is structural (i.e. the geometric or quasigeometric, 

not just operational/procedural) feat, that shall be further elaborated elsewhere. In this paper I 

wanted to focus only on purely algebraic aspects of the operational notion of infinity.  

 

 

5.  THE NEW SYNTHETIC METHODOLOGY FOR AVOIDING CONTROVERSIES 

     BETWEEN OPERATIONAL AND STRUCTURAL REQUIREMENTS IN  

     MATHEMATICS 
 

Unrestricted algebraic operations, which should include unambiguous division by zero (if 

it is to be truly unrestricted), are needed for all four algebraic operations in order for them to be 
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permissible and thus viable in realistic modeling of physical phenomena. This is because 

assigning numbers to points in a space is conventional and thus somewhat arbitrary. Hence the 

infamous – and unwarranted even though rarely contested – prohibition of division by zero is 

the main obstacle to any future development of physical sciences, no matter via which methods 

the division is going to be implemented in practice.  

If unrestricted algebraic division by zero, which is necessary in the real spacetime, is 

implemented as algebraic multiplication by infinity in the domain of complex numbers, then 

zero and infinity should reside in separate mutually dual paired reciprocal spaces. One of the 

spaces is the primary unfurled three-dimensional (3D) algebraic Euclidean ℝ3 space (commonly 

viewed as just a set-theoretical container of abstract number-points), whereas the other space 

of each pair is either a furled 1D or an unfurled 3D dual reciprocal space associated/paired with 

the primary space. Therefore, each of such mutually paired spaces should be equipped with its 

own (i.e. native to the given space) homogeneous orthogonal basis, whether algebraic or 

geometric. The pairing relies on reciprocity.  

Since 3D homogeneous algebraic and geometric bases can preserve orthogonality intact 

the restriction of highest dimensionality of realistic simple geometric spaces to 4D does not 

preclude construction of higher-dimensional abstract quasispatial structures but it demands the 

deployment of heterogeneous 4D bases, for 3D homogeneous basis thwarts exceeding the 3rd 

dimension without violating the symmetry that underlies the preservation of lengths (i.e. 

isometry). Nothing prevents construction of realistic higher dimensional spatial structures, but 

higher than the 3rd dimension require partially overlaid structural composition such as the 

(3x+1t)D spacetime or the (1x+3t)D timespace that corresponds to, and partly overlays, the 4D 

spacetime; here x stands for length-based spatial variable(s) and t symbolizes time-based 

temporal variable(s). It may require thus pairing of single spaces that are called simple if they 

are equipped with an (algebraic or geometric) orthogonal 3D homogeneous basis.  

However, realistic dimensions of constructible higher than 4D spatial structures should 

be quantized/grouped in triples (even if they are partly or entirely overlaid upon one another 

within a heterogeneous quadruple) if the structures are to remain credible. For dimensions are 

not like bricks that could be arbitrarily stacked upon each other at one’s whim. They are abstract 

features of geometric and quasigeometric structures and as such they must be subject to both 

structural and operational rules satisfying the abstract structural and operational laws of 

mathematics, any violation of which is virtually punished by generating subtle yet often very 

confusing nonsenses, regardless of whether the nonsenses (or their consequences) are 

recognized as drivel or not.  

Although the fact that contravariant representation of variables is reciprocal to that of 

covariant representation of the variables is well known and commonly accepted as valid in 

engineering applications involving vectors and tensors, and their handling of vectorial bases is 

correct [56], they do not always, if at all, keep track of the underlying them algebraic bases and 

of the need to change them when it becomes necessary. For if we substitute for covariant 

derivatives their reciprocals, we obtain a set of equations connecting the elements of the 

[inverse/reciprocal] contravariant system [57]. Reciprocity is fundamental even though its 

importance was ignored. Nevertheless, thinking in terms of tensor representations (also known 

as “absolute differential calculus” in the past) may inadvertently lead to incorrect inferences in 

other than purely radial cases.  

In this paper I have focused on the new operational treatment of the notion of infinity and 

was concentrated on complex analysis as a realistic (not to say “real”) way to deduce properties 
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of the operational infinity. For quick review of main results of complex analysis for physical 

sciences see [58].  Even Euler, who invented numerous formulas involving real, imaginary and 

complex numbers, once apparently also considered imaginaries as impossible quantities [59]. 

Yet they are not only possible but indispensable for understanding the notions of spatiality in 

general, and dimensionality in particular. My (new) synthetic approach to mathematics builds 

(or synthesizes) theories not upon a competitive fight of contesting ideas but on coexistence of 

structurally valid concepts (if the structures comply with the operations that are supposed to fit 

the structures) has guided this presentation. It is because matching operations to the structures 

on which one wants to operate, is the essence of the new synthetic approach that I have proposed 

in many of my papers. For there is certainly neither need nor advantage to operate on impossible 

to construct, unrealistic though postulated structures or for trying to build fictitious 

quasigeometric structures if one could not legitimately operate on them. The importance of 

matching constructible structures with the operational procedures that should correspond to the 

structures is intuitively clear, I think.  

Yet the new synthetic approach that I have espoused was co-inspired by the MacLane’s 

tradition-breaking assertion that “the fundamental object of mathematics is not a set composed 

of elements, but a sheaf of functions on some nonspecified space or locale” [60], which – to me 

– has underscored the primary importance of local variations of the sheaves of functions and 

consequently thus also the necessity to treat them in most abstract terms of operationally 

legitimate differentials. My personal impression was that he called for such mathematical 

models of spaces whose validity is to be ensured by the feasibility of operations performed on 

the functions’ sheaves. Recall that the traditional approach relied on three fundamental 

processes commonly found in mathematics, namely: constructing objects, then forming 

relations between the objects, and finally demonstrating that certain such relations are true (i.e. 

proving theorems) – compare [61]. But there was neither the assurance that the postulated 

objects were indeed constructible (not merely declared as being unambiguously constructible) 

nor any guarantee that the objects can be meaningfully operated on. Everything regarding the 

correctness had implicitly relied on the attained skills and the current knowledge of the 

mathematician/constructor.  

Yet even without doubting the ingenuity or expertise of the mathematician, there was no 

provision for shifting paradigms in the traditional mathematics. Since formerly unanticipated 

experimental results virtually compel us to shift some previously unchallenged paradigms, we 

should devise an internal mathematical metaprocess for validating all the necessary 

modifications without reinventing everything from scratch under the new set of paradigms. And 

that is the chief role of the new synthetic approach to mathematical and mathematized sciences. 

The synthetic approach permits the following interpretation of the formula (4). 

Since gradient represents derivative and the imaginary unit operator represents twist then 

the formula (4) is an integral analogue of the geometric differential operator GDiff F()   

 

𝐺𝐷𝑖𝑓𝑓 𝐹(𝑃) = 𝐴𝐺𝑟𝑎𝑑 𝐹(𝑃) +  𝐺𝑇𝑤𝑠𝑡(𝐹(𝑃), … )               (5) 

 

which has been discussed in [62], see formulas (28, 29) and those following them. The AGrad 

is an algebraic gradient operator and GTwst is the geometric twist operator acting on the given 

function F(P) of the given primary space P. The eq. (5) just alludes to the supposition that the 

formula (4) can make sense also in the framework of extended differential operators. Since the 
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domain of complex numbers is only 2D algebraic structure, further discussion of the topic shall 

be presented elsewhere, preferably deferred to the context of 4D quaternions.  

 

 

6.  CONCLUSIONS 

 

I have shown by examples that the notion of an operational infinity can also be interpreted 

as a complex algebraic entity combining the real neverending ascending infinity with its 

imaginary infinitesimal reciprocal counterpart that corresponds to the descending infinity. 

Hence the twin character of fully operational infinity is depicting not only a dual reciprocal 

procedure but possibly also prospective structure of multispatial nature of the essentially 

setvalued infinity, which shall be discussed elsewhere. Hence the fully operational/procedural 

infinity is a compound entity of complex character and clearly twin dual reciprocal nature.  
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