Journal

Article title

Authors

Content

Title variants

Languages of publication

Abstracts

Discipline

Publisher

Journal

Year

Volume

Pages

181-202

Physical description

Contributors

author

- Mathematics Department, Tripoli University, Tripoli, Libya

References

- [1] N. H. Abdel-All, M. A. W. Mahmoud and H. N. Abd-Ellah. Geomerical Properties of Pareto Distribution. Applied Mathematics and Computation 145 (2003) 321-339
- [2] Amari S. and Nagaoka H. Methods of Information Geometry. American Mathematical Society, Oxford University Press (2000).
- [3] Khadiga Arwini, C.T.J. Dodson. Information Geometry Near Randomness and Near Independence. Lecture Notes in Mathematics 1953, Springer-Verlag, Berlin, Heidelberg, New York (2008).
- [4] Khadiga Arwini, C.T.J. Dodson. Information Geometric Neighbourhoods of Randomness and Geometry of the Mckay Bivariate Gamma 3-manifold. Sankhya: Indian Journal of Statistics 66 (2) (2004) 211-231
- [5] C.T.J. Dodson. Systems of connections for parametric models. In Proc. Workshop on Geometrization of Statistical Theory (1987) 28-31.
- [6] B. Efron. Defining the curvature of a statistical problem (with application to second order efficiency) (with discussion). Ann. Statist. 3 (1975) 1189-1242
- [7] Samuel Kotz, N. Balakrishnan and Norman L. Johnson. Continuous Multivariate distributions. Volume 1: Models and Applications, Second Edition, John Wiley and Sons, New York (2000).
- [8] Saralees Nadarajah. The Bivariate Gamma Exponential Distribution With Application To Drought Data. Journal of applied Mathematics and computing, 24 (2007) 221-230
- [9] Jose M. Oller. Information metric for extreme value and logistic probability distributions. Sankhya: The Indian Journal of Statistics, 49 (1987), Series A, Pt. 1, pp. 17-23
- [10] C.R. Rao. Information and accuracy attainable in the estimation of statistical parameters. Bull. Calcutta Math. Soc. 37 (1945) 81-91
- [11] K. Nomizu and T. Sasaki, Affine differential geometry: Geometry of Affine Immersions. Cambridge University Press, Cambridge (1994).
- [12] Y. Sato, K. Sugawa and M. Kawaguchi. The geometrical structure of the parameter space of the two-dimensional normal distribution. Division of information engineering, Hokkaido University, Sapporo, Japan (1977).
- [13] L.T. Skovgaard. A Riemannian geometry of the multivariate normal model. Scand. J. Statist. 11 (1984) 211-223
- [14] Steel, S. J., and le Roux, N. J. A class of compound distributions of the reparametrized bivariate gamma extension. South African Statistical Journal 23 (1989) 131-141
- [15] S. Yue. A Bivariate Gamma Distribution for Use in Multivariate Flood Frequency Analysis. Hydrological Processes 15 (2001) 1033-1045
- [16] S. Yue. Applying bivariate normal distribution to flood frequency analysis. Water International 24 (1999) 248-254
- [17] S. Yue, Applicability of the Nagao–Kadoya bivariate exponential distribution for modeling two correlated exponentially distributed variates. Stochastic Environmental Research and Risk Assessment 15 (2001) 244-260
- [18] S. Yue, T. B. M. J. Ouarda and B. Bobee. A Review of Bivariate Gamma Distributions for Hydrological Application. Journal of Hydrology 246 (2001) 1-18

Document Type

article

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.psjd-d3c86fcc-db27-4a63-a632-3dde6342ade8