Preferences help
enabled [disable] Abstract
Number of results
2018 | 110 | 210-218
Article title

Non-adiabatic universe and the redshift

Title variants
Languages of publication
We have relaxed the constraint of adiabatic universe used in most cosmological models and shown that the new approach provides a better fit to the supernovae Ia redshift data with a single parameter, the Hubble constant, than the standard ΛCDM model with two parameters, the Hubble constant and the cosmological constant. The new approach, developed within the confines of the cosmological principle, yields the Hubble constant value 69.01 (±0.53) km s-1 Mpc-1. The cosmological constant may thus be considered as a manifestation of a non-adiabatic universe that is treated as an adiabatic universe.
Physical description
  • Macronix Research Corporation, 9 Veery Lane, Ottawa, K1J 8X4, Canada
  • [1] P. J. E. Peebles, Principles of physical cosmology, Princeton University Press, Princeton, NJ (1993).
  • [2] A. A. Penzias and R. W. Wilson, A measurement of excess antenna temperature at 4080 Mc/s., Astrophys. J. 142 (1965) 419-421.
  • [3] R. G. Vishwakarma and J. V. Narlikar, Is it no longer necessary to test cosmologies with type Ia supernovae? Universe 4 (2018) 73 1-12.
  • [4] R. G. Vishwakarma and J. V. Narlikar, A critique of supernova data analysis in cosmology, Res. Astron. Astrophys. 10 (2010) 1195–1198.
  • [5] R. G. Vishwakarma, Do recent supernovae Ia observations tend to rule out all the cosmologies? Int. J.Mod. Phys. D 16 (2007) 1641–1651.
  • [6] C. H. Lineweaver and D. Barbosa, Cosmic microwave background observations: Implications for Hubble's constant and the spectral parameters N and Q in cold dark matter critical density universes, Astron. & Astrophys. 329 (1998) 799-808.
  • [7] A. Blanchard, M. Douspis, M. Rowan-Robinson and S. Sarkar, An alternative to the cosmological “Concordance Model”, Astron. & Astrophys. 412 (2003) 35-44.
  • [8] M. López-Corredoira, Test and problems of the standard model in cosmology, Found. Phys. 47 (2017) 711-768.
  • [9] V. V. Orlov and A. A. Raikov, Cosmological tests and evolution of extragalactic objects, Astron. Reports. 60 (2016) 477-485.
  • [10] R. P. Gupta, Mass of the universe and the redshift, International J. Astron. Astrophys. 8 (2018) 68-78.
  • [11] R. P. Gupta, Static and dynamic components of the redshift, International J. Astron. Astrophys. 8 (1918) 219-229.
  • [12] E. Poisson, The motion of point particles in curved spacetime, Living Rev. Rel. 7: 6 (2004).
  • [13] E. Fischer, Redshift from gravitational back reaction. arXiv astro-ph/0703791 (2007).
  • [14] B. Ryden, Introduction to cosmology, Cambridge University Press, Cambridge, UK (2017).
  • [15] C. H. Brans, Mach’s principle and the locally measured gravitational constant in general relativity, Phys. Rev. 125 (1962) 388-396.
  • [16] R. Amanullah, et al., Spectra and Hubble space telescope light curves of six type Ia supernovae at 0.511 < z< 1.12 and the UNION2 Compilation. Astrophys. J. 716 (2010) 712-738.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.