PL EN


Preferences help
enabled [disable] Abstract
Number of results
2005 | 5 | 4 | 271-281
Article title

Ataksje rdzeniowo-móżdżkowe: od genotypu do fenotypu

Content
Title variants
Languages of publication
EN PL
Abstracts
EN
Spinocerebellar ataxias are heterogenic group of hereditary neurodegenerative diseases, characterized by progressive degeneration of Purkinje cells in cerebellum and neurons of the brainstem. This condition causes a broad spectrum of clinical symptoms to occur: ataxia of gait, posture and limbs, dysarthria, ophthalmoplegia, retinopathy, optic atrophy, pyramidal and extrapyramidal disorders, neuropathy of variable manifestation, amyotrophy, cognitive impairment and epileptic seizures. These symptoms inevitably lead to disability of varying degree. Not until recently has it become possible to identify and classify this group of diseases by means of molecular biology methods. Research proved the majority of cases to be the result of the change in a number of repetitive DNA sequences (most frequently CAG) in a particular gene, i.e. dynamic mutation. If this mutation occurs in a coding region, protein with pathologically expanded polyglutamine sequence (polyQ, polyGln) is assembled, which eventually forms neuronal intranuclear inclusions (NII). Those aggregates tend to confiscate important proteins, proteasome subunits and transcription factors among others, yet current understanding of their role in the emergence of the disease indicates their protective rather than destructive function. Dynamic mutation may also take place in a non-coding part of a particular gene, e.g. intron or non-translated region, which leads to the loss of its function or toxic reactions on the mRNA level. Discovery of dynamic mutations being the cause of spinocerebellar ataxias explains some of the phenomena observed in course of the disease, e.g. anticipation. However, present knowledge of pathophysiology of spinocerebellar ataxias is insufficient. It is only when in-depth analysis of molecular pathways leading to the occurrence of clinical symptoms is performed that potentially promising therapeutic strategies will be developed and utilized.
PL
Ataksje rdzeniowo-móżdżkowe są heterogenną grupą dziedzicznych chorób neurodegeneracyjnych charakteryzujących się postępującym zwyrodnieniem komórek Purkinjego w móżdżku i neuronów pnia mózgu. Powoduje to wystąpienie szerokiego spektrum objawów klinicznych: niezborności chodu, postawy i kończyn, dyzartrii, oftalmoplegii, retinopatii, zaniku nerwu wzrokowego, zaburzeń funkcji układu piramidowego i pozapiramidowego, różnopostaciowej klinicznie neuropatii, amiotrofii, zaburzeń poznawczych oraz napadów padaczkowych. Objawy te nieodłącznie prowadzą do inwalidztwa o różnym stopniu nasilenia. Dopiero niedawno możliwa stała się identyfikacja i klasyfikacja tej grupy chorób oparta na metodach biologii molekularnej. Badania wykazały, że w większości przypadków za rozwinięcie fenotypu chorobowego odpowiedzialna jest zmiana liczby powtarzalnych sekwencji DNA (najczęściej CAG) w odpowiednim genie, czyli mutacja dynamiczna. Jeśli mutacja ma miejsce w regionie kodującym, skutkuje to powstaniem białka o patologicznie wydłużonej sekwencji poliglutaminowej (polyQ, polyGln), które tworzy neuronalne inkluzje wewnątrzjądrowe. Agregaty te sekwestrują wiele różnych białek, m.in. podjednostki proteasomów i czynniki transkrypcyjne, jednak obecnie uważa się, że pełnią one raczej rolę protekcyjną niż są odpowiedzialne za wystąpienie fenotypu chorobowego. Mutacja dynamiczna może zajść również w obszarze niekodującym genu, np. intronie lub regionie niepodlegającym translacji, powodując utratę funkcji genu, jej zaburzenie lub toksyczne reakcje na poziomie mRNA. Stwierdzenie, że ataksje rdzeniowo-móżdżkowe są wywoływane mutacją dynamiczną, wyjaśnia niektóre zjawiska obserwowane w przebiegu tych chorób, np. antycypację. Jednak wiedza na temat patofizjologii ataksji rdzeniowo-móżdżkowych jest niewystarczająca. Dopiero dogłębne poznanie szlaków molekularnych prowadzących do wystąpienia objawów klinicznych może pozwolić na wdrożenie potencjalnie skutecznych strategii terapeutycznych w tej grupie chorób.
Discipline
Year
Volume
5
Issue
4
Pages
271-281
Physical description
References
  • 1. Bird T.D.: Hereditary ataxia overview. http://www.gene-clinics.org/servlet/access?db=geneclmics&site=gt&id= 8888891&key = U0EVCBakjvMZq&gry = &fcn = y&fw=ig9-&filename=/profiles/ataxias/index.html
  • 2. European Integrated Project on Spinocerebellar Ataxias (SCA): Pathogenesis, Genetics, Animal Models and Therapy. http://www.eurosca.org
  • 3. Harding A.E.: The clinical features and classification of the late onset autosomal dominant cerebellar ataxias. A study of 11 families, including descendants of the Drew family of Walworth. Brain 1982; 105: 1-28.
  • 4. Harding A.E.: Clinical features and classification of inherited ataxias. Adv. Neurol. 1993; 61: 1-14.
  • 5. Orr H.T., Chung M.Y., Banfi S. i wsp.: Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat. Genet. 1993; 4: 221-226.
  • 6. Schols L., Amoiridis G., Buttner T. i wsp.: Autosomal dominant cerebellar ataxia: phenotypic differences in genetically defined subtypes? Ann. Neurol. 1997; 42: 924-932.
  • 7. Babovic-Vuksanovic D., Snow K., Patterson M.C. i wsp.: Spinocerebellar ataxia type 2 (SCA 2) in an infant with extreme CAG repeat expansion. Am. J. Med. Genet. 1998: 79: 383-387.
  • 8. Hirayama K., Takayanagi T, Nakamura R. i wsp.: Spinocerebellar degenerations in Japan: a nationwide epidemi-ologial and clinical study. Acta Neurol. Scand. 1994; 153 (supl.): 1-22.
  • 9. van de Warrenburg B.P., Sinke R.J., Verschuuren-Bemelmans C.C. i wsp.: Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002; 58: 702-708.
  • 10. Maruyama H., Izumi Y., Morino H. i wsp.: Difference in disease-free survival curve and regional distribution according to subtype of spinocerebellar ataxia: a study of 1286 Japanese patients. Am. J. Med. Genet. 2002; 114: 578-583.
  • 11. PareysonD., GelleraC., Castellotti B. iwsp.: Clinical and molecular studies of 73 Italian families with autosomal dominant cerebellar ataxia type I: SCA1 and SCA2 are the most common genotypes. J. Neurol. 1999; 246: 389-393.
  • 12. Brusco A., Gellera C., Cagnoli C. i wsp.: Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of SCA genes and CAG/CTG repeat expansion detection (RED) in 225 Italian families. Arch. Neurol. 2004; 61: 727-733.
  • 13. Saleem Q., Choudhry S., Mukerji M. i wsp.: Molecular analysis of autosomal dominant hereditary ataxias in the Indian population: high frequency of SCA2 and evidence for a common founder mutation. Hum. Genet. 2000; 106: 179-187.
  • 14. Silveira I., Miranda C., Guimaraes L. iwsp.: Trinucleotide repeats in 202 families with ataxia: a small expanded (CAG) n allele at the SCA17 locus. Arch. Neurol. 2002; 59: 623-629.
  • 15. Silveira I., Coutinho P, Maciel P i wsp.: Analysis of SCA1, DRPLA MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. Am. J. Med. Genet. 1998; 81: 134-138.
  • 16. Dane nieopublikowane.
  • 17. Stevanin G., Cancel G., Didierjean O. i wsp.: Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation. Am. J. Hum. Genet. 1995; 57: 1247-1250.
  • 18. Gaspar C., Lopes-Cendes I., DeStefano A.L. i wsp.: Linkage disequilibrium analysis in Machado-Joseph disease patients of different ethic origins. Hum. Genet. 1996; 98: 620-624.
  • 19. Dichgans M., Schols L., Herzog J. i wsp.: Spinocerebellar ataxia type 6: evidence for a strong founder effect among German families. Neurology 1999; 52: 849-851.
  • 20. Stevanin G., David G., Dorr A. i wsp.: Multiple origins of the spinocerebellar ataxia 7 (SCA7) mutation revealed by linkage disequilibrium studies with closely flanking markers, including an intragenic polymorphism G3145TG/A3145TG. Eur. J. Hum. Genet. 1999; 7: 889-896.
  • 21. Endo K., Sasaki H., Wakisaka A. i wsp.: Strong linkage disequilibrium and haplotype analysis in Japanese pedigrees with Machado-Joseph disease. Am. J. Med. Genet. 1996; 67: 437-444.
  • 22. Tang B., Liu C., Shen L. i wsp.: Frequency of SCA1, SCA2, SCA3/MJD, SCA6, SCA7, and DRPLA CAG trinucleotide repeat expansion in patients with hereditary spinocerebellar ataxia from Chinese kindreds. Arch. Neurol. 2000; 57: 540-544.
  • 23. Bryer A., Krause A., Bill P. i wsp.: The hereditary adult-onset ataxias in South Africa. J. Neurol. Sci. 2003; 216: 47-54.
  • 24. Moseley M.L., Benzow K.A., Schut L.J. i wsp.: Incidence of dominant spinocerebellar and Friedreich triplet repeats among 361 ataxia families. Neurology 1998; 51:1666-1671.
  • 25. Subramanian S., MadgulaVM., George R. iwsp.: Triplet repeats in human genome: distribution and their association with genes and other genomic regions. Bioinformatics 2003; 19: 549-552.
  • 26. Subramanian S., Mishra R.K., Singh L.: Genome-wide analysis of microsatellite repeats in humans: their abundance and density in specific genomic regions. Genome Biol. 2003; 4: R13.
  • 27. Karlin S., Burge C.: Trinucleotide repeats and long homopeptides in genes and proteins associated with nervous system disease and development. Proc. Natl. Acad. Sci. USA; 1996; 93: 1560-1565.
  • 28. Lalioti M.D., Scott H.S., Buresi C. iwsp.: Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 1997; 386: 847-851.
  • 29. Yu S., MangelsdorfM., Hewett D. i wsp.: Human chromosomal fragile site FRA16B is an amplified AT-rich minisatellite repeat. Cell 1997; 88: 367-374.
  • 30. Hewett D.R., Handt O., Hobson L. i wsp.: Structure of FRA10B reveals common elements in repeat expansion and chromosomal fragile genesis. Mol. Cell. 1998; 1: 773-781.
  • 31. Takano H., Cancel G., Ikeuchi T. i wsp.: Population genetics of dominantly inherited spinocerebellar ataxias with CAG repeat expansions in Japanese and Caucasian: tight association of the prevalence rates with the frequencies of intermediate alleles. Am. J. Hum. Genet. 1998; 63: 1060-1066.
  • 32. Ordway J.M., Tallaksen-Greene S., GutekunstC.A. iwsp.: Ectopically expressed CAG repeats cause intranuclear inclusions and a progressive late onset neurological phenotype in the mouse. Cell 1997; 91: 753-763.
  • 33. Klement I.A., Skinnet PJ., Kaytor M.D. i wsp.: Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 1998; 95: 41-53.
  • 34. Zoghbi H.Y., Orr H.T.: Polyglutamine diseases: protein cleavage and aggregation. Curr. Opin. Neurobiol. 1999; 9: 566-570.
  • 35. WellingtonC.L., EllerbyL.M., Hackam A.S. iwsp.: Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 1998; 273: 9158-9167.
  • 36. Perutz M.F., Johnson T, Suzuki M., Finch J.T.: Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc. Natl. Acad. Sci. USA 1994; 91: 5355-5358.
  • 37. Ishikawa K., Fujigasaki H., Saegusa H. i wsp.: Abundant expression and cytoplasmatic aggregations of a1A voltage-dependent calcium channel protein associated with neurodegeneration in spinocerebellar ataxia type 6. Hum. Mol. Genet. 1999; 8: 1185-1193.
  • 38. Chen H.K., Fernandez-Funez P., Acevedo S.F. i wsp.: Interaction of Akt-phosphorylated ataxin-1 with 14-3-3 mediates neurodegeneration in spinocerebellar ataxia type 1. Cell 2003; 113: 457-468.
  • 39. Emamian E.S., Kaytor M.D., Duvick L.A. i wsp.: Serine 776 of ataxin-1 is critical for polyglutamine-induced disease in SCA1 transgenic mice. Neuron 2003; 38: 375-387.
  • 40. Yvert G., Lindenberg K.S., Devys D. i wsp.: SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. Hum. Mol. Genet. 2001; 10: 1679-1692.
  • 41. Perez M.K., Paulson H.L., Pendse S.J. i wsp.: Recruitment and the role of nuclear localization in polyglutamine-mediated aggregation. J. Cell Biol. 1998; 143: 1457-1470.
  • 42. Shimohata T, Nakajima T, Yamada M. i wsp.: Expanded polyglutamine stretches interact with TAFII130, interfering with CREB-dependent transcription. Nat. Genet. 2000; 26: 29-36.
  • 43. Cummings C.J., Mancini MA., Antalffy B. i wsp.: Chaperone supression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nat. Genet. 1998; 19: 148-154.
  • 44. Chai Y., Koppenhafer S.L., Shoesmith S.J. i wsp.: Evidence for proteasome involvement in polyglutamine disease: localization to nuclear inclusions in SCA3/MJD and suppresion of polyglutamine aggregation in vitro. Hum. Mol. Genet. 1999; 8: 673-682.
  • 45. Cummings C.J., Reinstein E., Sun Y. i wsp.: Mutation of the E6-AP ubiquitin ligase reduces nuclear inclusion frequency while accelerating polyglutamine-induced pathology in SCA1 mice. Neuron 1999; 24: 879-892.
  • 46. Sisodia S.S.: Nuclear inclusions in glutamine repeat disorders: are they pernicious, coincidental or beneficial? Cell 1998; 95: 1-4.
  • 47. Helmlinger D., Abou Sleymane G., Yvert G. i wsp.: Disease progression despite early loss of polyglutamine protein expression in SCA7 mouse model. J. Neurosci. 2004: 24: 1881-1887.
  • 48. Zhuchenko O., Bailey J., Bonnen P: Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha1A-voltage-dependent calcium channel. Nat. Genet. 1997; 15: 62-69.
  • 49. Toru S., Murakoshi T., Ishikawa K. i wsp.: Spinocerebellar ataxia type 6 mutation alters P-type calcium channel function. J. Biol. Chem. 2000; 275: 10893-10898.
  • 50. Ophoff R.A., Terwindt G.M., Vergouwe M.N. i wsp.: Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87: 543-552.
  • 51. Denier C., Ducros A., Vahedi K. i wsp.: High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999; 52: 1816-1821.
  • 52. Jen J.C., Yue Q., Karrim J. i wsp.: Spinocerebellar ataxia type 6 with positional vertigo and acetazolamide responsive episodic ataxia. J. Neurol. Neurosurg. Psychiatry 1998; 65: 565-568.
  • 53. Yue Q., Jen J.C., Nelson S.F. iwsp.: Progressive ataxia due to a missense mutation in a calcium-channel gene. Am. J. Hum. Genet. 1997; 61: 1078-1087.
  • 54. Holmes S.E., O’Hearn E.E., Mclnnis M.G. iwsp.: Expansion of a novel CAG trinucleotide repeat in the 5’ region of PPP2R2B is associated with SCA12 [letter]. Nat. Genet. 1999; 23: 391-392.
  • 55. Holmes S.E., O’Hearn E.E., Margolis R.L.: Why is SCA12 different from other SCAs? Cytogenet. Genome Res. 2003; 100: 189-197.
  • 56. Lin X., Ashizawa T.: Recent progress in spinocerebellar ataxia type-10 (SCA10). Cerebellum 2005; 4: 37-42 [przegląd].
  • 57. Koob M.D., Moseley M.L., Schut L.J. i wsp.: An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat. Genet. 1999; 21: 379-384.
  • 58. Nemes J.P, Benzow K.A., Moseley M.L. i wsp. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum. Mol. Genet. 2000; 9: 1543-1551.
  • 59. Ranum L.P, Moseley M.L., Leppert M.F. i wsp.: Massive CTG expansions and deletions may reduce penetrance of spinocerebellar ataxia type 8. Am. J. Hum. Genet. 1999; 65 (supl.): A466.
  • 60. Stevanin G., Herman A., Durr A. i wsp.: Are (CTG)n expansions at the SCA8 locus rare polymorphisms? Nat. Genet. 2000; 24: 213-215.
  • 61. Schols L., Bauer I., Zuhlke C. i wsp.: Do CTG expansions at the SCA8 locus cause ataxia? Ann. Neurol. 2003; 54: 110-115.
  • 62. Chen D.H., Brkanac Z., Verlinde C.L. i wsp.: Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Am. J. Hum. Genet. 2003; 72: 839-849.
  • 63. Abeliovich A., Paylor R., Chen C. i wsp.: PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell 1993; 75: 1263-1271.
  • 64. Skinner PJ., Vierra-Green C.A., Clark H.B. i wsp.: Altered trafficking of membrane proteins in purkinje cells of SCA1 transgenic mice. Am. J. Pathol. 2001; 159: 905-913.
  • 65. van Swieten J.C., Brusse E., de Graaf B.M. i wsp.: A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am. J. Hum. Genet. 2003; 72: 191-199.
  • 66. Holmes G.M.: A form of familial degeneration of the cerebellum. Brain 1907; 30: 466-489.
  • 67. Waggoner R.W, Lowenberg K., Speicher K.G.: Hereditary cerebellar ataxia: report of a case and genetic study. Arch. Neurol. Psychiatry 1938; 39: 570-586.
  • 68. Burk K., Abele M., Fetter M. i wsp.: Autosomal dominant cerebellar ataxia type I clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 1996; 119: 1497-1505.
  • 69. Sulek A.: Molekularna diagnostyka ataksji rdzeniowo-móżdżkowej. Nowoczesna diagnostyka w neurologii i psychiatrii. 2001 [konferencja].
  • 70. Schmitz-Hubsch T: Clinical assessment of a patient with spinocerebellar ataxia - the challenge of clinical research. Clinico-Genetic Conference on Spinocerebellar Ataxias organized by IPiN and EUROSCA [konferencja].
  • 71. Klockgether T, Skalej M., Wedekind D. i wsp.: Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia type 1,2 and 3. Brain 1998; 121: 1687-1693.
  • 72. Giuffrida S., Saponara R., Restivo D.A. i wsp.: Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of 20 patients. J. Neurol. 1999; 246: 383-388.
  • 73. Bang O.Y., Huh K., Lee PH. i wsp.: Clinical and neuroradiological features of patients with spinocerebellar ataxias from Korean kindreds. Arch. Neurol. 2003; 60: 1566-1574.
  • 74. Bang O.Y., Lee PH., Kim S.Y. i wsp.: Pontine atrophy precedes cerebellar degeneration in spinocerebellar ataxia 7: MRI-based volumetric analysis. J. Neurol. Neurosurg. Psychiatry 2004; 75: 1452-1456.
  • 75. Sugawara M., Toyoshima I., Wada C.: Pontine Atrophy in Spinocerebellar Ataxia Type 6. Eur. Neurol. 2000; 43: 17-22.
  • 76. Matilla A.: The highly heterogenous spinocerebellar ataxias: from genes to targets for therapeutic intervention. Euroataxia 2003; 24: 2-5.
  • 77. Chen M., Ona V.O., Li M. i wsp.: Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nature Med. 2000; 6: 797-801.
  • 78. Bonelli R.M., Hodl A.K., Hofmann P. i wsp.: Neuroprotection in Huntington’s disease: a 2-year study on minocycline. Int. Clin. Psychopharmacol. 2004; 19: 337-342.
  • 79. Przedrukowane z THE LANCET NEUROLOGY; 3 (5); Schols L., Bauer P., Schmidt T. i wsp.: Autosomal dominant cerebellar ataxias: clinical features, genetics, and pathogenesis; 291-304; Copyright (2004); za zgodą Elsevier.
  • 80. Sasaki H., Fukazawa T., Yanagihara T. i wsp.: Clinical features and natural history of spinocerebellar ataxia type 1. Acta Neurol. Scand. 1996; 93: 64-71.
  • 81. Geschwind D.H., Perlman S., Figueroa C.P. i wsp.: The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Am. J. Hum. Genet. 1997; 60: 842-850.
  • 82. Schols L., Amoiridis G., Epplen J.T. i wsp.: Relations between genotype and phenotype in German patients with the Machado-Joseph disease mutation. J. Neurol. Neurosurg. Psychiatry 1996; 61: 466-470.
  • 83. Sequeiros J., Coutinho P.: Epidemiology and clinical aspects of Machado-Joseph disease. W: Harding A.E., Deufel T. (red.): Advances in Neurology. Raven Press, New York 1993: 139-153.
  • 84. Flanigan K., Gardner K., Alderson K. i wsp.: Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am. J. Hum. Genet. 1996: 59: 392-399.
  • 85. Ranum L.P., Schut L.J., Lundgren J.K. i wsp.: Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat. Genet. 1994; 8: 280-284.
  • 86. Matsumura R., Futamura N., Fujimoto Y. i wsp.: Spinocerebellar ataxia type 6. Molecular and clinical features of 35 Japanese patients including one homozygous for the CAG repeat expansion. Neurology 1997; 49: 1238-1243.
  • 87. Enevoldson T.P., Sanders M.D., Harding A.E.: Autosomal dominant cerebellar ataxia with pigmentary macular dystrophy: a clinical and genetic study of eight families. Brain 1994; 117: 445-460.
  • 88. Day J.W, Schut L.J., Moseley M.L. i wsp.: Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 2000; 55: 649-657.
  • 89. Grewal R.P., Achari M., Matsuura T. i wsp.: Clinical features and ATTCT repeat expansion in spinocerebellar ataxia type 10. Arch. Neurol. 2002; 59: 1285-1290.
  • 90. Worth PF., Giunti P, Gardner-Thorpe C. i wsp.: Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am. J. Hum. Genet. 1999; 65: 420-426.
  • 91. O’Hearn E., Holmes S.E., Calvert P.C. i wsp.: SCA-12: Tremor with cerebellar and cortical atrophy is associated with a CAG repeat expansion. Neurology 2001; 56: 299-303.
  • 92. Herman-Bert A., Stevanin G., Netter J.C. iwsp.: Mapping of spinocerebellar ataxia 13 to chromosome 19q13.3-q13.4 in a family with autosomal dominant cerebellar ataxia and mental retardation. Am. J. Hum. Genet. 2000; 67:229-235.
  • 93. Yamashita I., Sasaki H., Yabe I. i wsp.: A novel locus for dominant cerebellar ataxia (SCA14) maps to a 10.2-cM interval flanked by D19S206 and D19S605 on chromosome 19q13.4-qter. Ann. Neurol. 2000; 48: 156-163.
  • 94. Storey E., Gardner R.J., Knight M.A. i wsp.: A new autosomal dominant pure cerebellar ataxia. Neurology 2001; 57: 1913-1915.
  • 95. Miyoshi Y., Yamada T, Tanimura M. i wsp.: A novel autosomal dominant spinocerebellar ataxia (SCA16) linked to chromosome 8q22.1-24.1. Neurology 2001; 57: 96-100.
  • 96. Nakamura K., Jeong S.Y., Uchihara T. i wsp.: SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum. Mol. Genet. 2001; 10: 1441-1448.
  • 97. Brkanac Z., Fernandez M., Matsushita M. i wsp.: Autosomal dominant sensory/motor neuropathy with Ataxia (SMNA): linkage to chromosome 7q22-q32. Am. J. Med. Genet. 2002; 114: 450-457.
  • 98. Schelhaas H.J., Ippel P.F., Hageman G. i wsp.: Clinical and genetic analysis of a four-generation family with a distinct autosomal dominant cerebellar ataxia. J. Neurol. 2001; 248: 113-120.
  • 99. Devos D., Schraen-Maschke S., Vuillaume I. i wsp.: Clinical features and genetic analysis of a new form of spinocerebellar ataxia. Neurology 2001; 56: 234-238.
  • 100. Chung M.Y., Lu Y.C., Cheng N.C. i wsp.: A novel autosomal dominant spinocerebellar ataxia (SCA22) linked to chromosome 1p21-q23. Brain 2003; 126: 1293-1299.
  • 101. Stevanin G., Bouslam N., Thobois S. i wsp.: Spinocerebellar ataxia with sensory neuropathy (SCA25) maps to chromosome 2p. Ann. Neurol. 2004; 55: 97-104.
  • 102. Tsuji S.: Dentatorubral-pallidoluysian atrophy (DRPLA). J. Neural. Transm. Suppl. 2000; 58: 167-180.
Document Type
article
Publication order reference
YADDA identifier
bwmeta1.element.psjd-d034dd8b-b4b0-47f9-af68-263a8d0b819a
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.