PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 9 | 1 | 5-15
Article title

Impact of Nine Month Health Training and a Single Exercise on Changes in Ghrelin, Leptin and Free Fatty Acids Levels in Women’s Blood

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the research was to assess changes in ghrelin, leptin and free fatty acids (FFA) levels in women’s blood after training. The research was carried out in women aged 45.55 ±11.33 years and with the BMI of 26.49 ±4.49. Health training at 50–66% VO2max took place twice a week for 9 months. In the baseline phase and in the 3rd, 6th and 9th month of the training, body mass and composition were measured, cardiorespiratory fitness was checked after a 10-minute exercise test on a cycloergometer, and fasting levels of ghrelin, leptin and FFA in the serum were assayed and 15 minutes after the exercise test. Body mass was reduced in the 6th month of the training. Fasting ghrelin level increased because of training, leptin and FFA decreased. After single 10-minute exercises performed every 3 months level of ghrelin and FFA increased while leptin decreased. An increase in ghrelin level in the blood after the single exercise can be the result of negative energy expenditure. An increase in fasting ghrelin level after training can be one of the adaptive physiological mechanisms connected with energy saving. A mechanism that is switched on as a result of a long-lasting stimulus that leads to energy losses, reduction in body mass and a decrease in leptin level in the blood.
Discipline
Publisher

Year
Volume
9
Issue
1
Pages
5-15
Physical description
Contributors
  • University School of Physical Education, Physiology and Biochemistry Department
  • University School of Physical Education, Physiology and Biochemistry Department
  • Theory of Sport Department, University School of Physical Education, Wroclaw, Poland
  • Histology and Embryology Department, Medical University, Wroclaw, Poland, Department of Physiotherapy, University School of Physical Education, Wroclaw, Poland
References
  • Andrews Z.B. Central mechanisms involved in the orexigenic actions of ghrelin. Peptides 2011; 32: 2248–2255.
  • Ariyasu H., Takaya K., Tagami T., Ogawa Y., Hosoda K., Akamizu T., Suda M., Koh T., Natsui K., Toyooka S., Shirakami G., Usui T., Shimatsu A., Doi K., Hosoda H., Kojima M., Kangawa K., Nakao K. Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans. J. Clin. Endocrinol. Metab. 2001; 86: 4753–4758.
  • Broglio F., Gottero C., Van Koetsveld P., Prodam F., Destefanis S., Benso A., Gauna C., Hofland L., Arvat E., van der Lely A.J., Ghigo E. Acetylcholine regulates ghrelin secretion in humans. J. Clin. Endocrinol. Metab. 2004; 89: 2429–2433.
  • Broom D.R., Batterham R.L., King J.A., Stensel D.J. Influence of resistance and aerobic exercise on hunger, circulating levels of acylated ghrelin, and peptide YY in healthy males. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296: 29–35
  • Broom D.R., Stensel D.J., Bishop N.C., Burns S.F., Miyasashita M. Exercise – induced suppression of acylated ghrelin in humans. J. Appl. Physiol. 2007; 102: 2165–2171.
  • Carling D., Sanders M.J., Woods A. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 2008; 32 (Suppl. 4): S55–S59
  • Cummings D.E., Purnell J.Q., Frayo R.S., Schmidova K., Wisse B.E., Weigle D.S. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 2001; 50: 1714 –1719.
  • Date Y., Nakazato M., Hashiguchi S., Dezaki K., Mondal M.S., Hosoda H., Kojima M., Kangawa K., Arima T., Matsuo H., Yada T., Matsukura S. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. Diabetes 2002; 51: 124–129.
  • Enriori P.J., Andrews Z.B., Cowley M.A. Ghrelin: neuropeptide regulator of metabolism. In: Ghrelin in health and disease. Contemporary Endocrinology, eds. R.G. Smith, S.M. Thorner. New York, Humana Press, Springer Science+Business Media, 2012; 10: 111–130.
  • Erdmann J., Tahbaz R., Lippl F., Wagenpfeil S., Schusdziarra V. Plasma ghrelin levels during exercise – effects of intensity and duration. Reg. Peptides. 2007; 143: 127–135.
  • Foster-Schubert K.E., McTiernan A., Frayo R.S. Human plasma ghrelin levels increase during a one-year exercise program. J. Clin. Endocrinol. Metab. 2005; 90: 820–825.
  • Garber C.E., Blissmer B., Deschenes M.R., Franklin B.A., Lamonte M.J., Lee I.M., Nieman D.C., Swain D.P. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med. Sci. Sports Exerc. 2011; 43: 1334–1359
  • Gnanapavan S., Kola B., Bustin S.A., Morris D.G., McGee P., Fairclough P., Bhattacharya S., Carpenter R., Grossman A.B., Korbonits M. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J. Clin. Endocrinol. Metab. 2002; 87: 2988–2991.
  • Hagobian T.A., Sharoff C.G., Stephens B.R., Wade G.N., Silva J.E., Chipkin S.R., Braun B. Effects of exercise on energy-regulating hormones and appetite in men and women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009; 296: 233–242.
  • Hansen T.K., Dall R., Hosoda H., Kojima M., Kangawa K., Christiansen J.S., Jørgensen J.O. Weight loss increases circulating levels of ghrelin in human obesity. Clin. Endocrinol. 2002; 56: 203–206.
  • Hardie D.G., Ross F.A., Hawley S.A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Rev. Mol. Cell Biol. 2012; 13, 251–262.
  • Jürimäe J., Jürimäe T., Purge P. Plasma ghrelin is altered after maximal exercise in elite male rowers. Exp. Biol. Med. 2007; 232: 904–909.
  • Kelishadi R., Hashemipourt M., Mohammadifard N., Alikhassy H., Adeli K. Short- and long-term relationship of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin. Endocrinol. 2008; 69: 721–729
  • King J.A., Wasse L.K., Stensel D.J., Nimmo M.A. Exercise and ghrelin. A narrative overview of research. Appetite 2013; 68: 83–91
  • Kirchner H., Tschöp M., Tong J. GOAT and the regulation of energy and glucose homeostasis. In: Ghrelin in health and disease. Contemporary Endocrinology, eds. R.G. Smith, S.M. Thorner. New York, Humana Press, Springer Science+Business Media, 2012; 10: 131–147.
  • Kozakowski J., Rabijewski M., Zgliczyński W. Ghrelin – growth hormone releasing and orexigenic hormone in men declines with age, insulin and with decrease in testosterone concentration. Neuro. Endocrinol. Lett. 2008; 29: 100–106
  • Kraemer R.R., Castracane V.D. Exercise and humoral mediators of peripheral energy balance: ghrelin and adiponectin. Exp Biol Med (Maywood) 2007; 232: 184–194.
  • Leidy H.J., Gardner J.K., Frye B.R., Snook M.L., Schuchert M.K., Richard E.L., Williams N.I. Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. J. Clin. Endocrinol. Metab. 2004; 89: 2659–2664.
  • Lopez M., Lage R., Saha A.K., Pérez-Tilve D., Vázquez M.J., Varela L., Sangiao-Alvarellos S., Tovar S., Raghay K., Rodríguez- -Cuenca S., Deoliveira R.M., Castañeda T., Datta R., Dong J.Z., Culler M., Sleeman M.W., Alvarez C.V., Gallego R., Lelliott C.J., Carling D., Tschöp M.H., Diéguez C., Vidal-Puig A. Hypothalamic fatty acid metabolism mediates the orexigenic action of ghrelin. Cell Metabol. 2008; 7: 389–399
  • Lopez M., Saha A.K., Dieguez C., Vidal-Puig A. The AMPK – malonyl-CoA – CPT1 axis in the control of hypothalamic neuronal function – reply. Cell Metabol. 2008a; 8: 176
  • Lopez M., Varela L., Vazquez M.J., Rodríguez-Cuenca S., González C.R., Velagapudi V.R., Morgan D.A., Schoenmakers E., Agassandian K., Lage R., Martínez de Morentin P.B., Tovar S., Nogueiras R., Carling D., Lelliott C., Gallego R., Orešič M., Chatterjee K., Saha A.K., Rahmouni K., Diéguez C., Vidal-Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nature Med. 2010; 16: 1001–1008.
  • Makovey J., Naganathant V., Seibel M., Sambrook P. Gender differences in plasma ghrelin and its relations to body composition and bone- an opposite-sex twin study. Clin. Endocrinol. 2007; 66: 530–537
  • Martins C., Morgan L.M., Bloom S.R., Robertson M.D. Effects of exercise on gut peptides, energy intake and appetite. J. Endocrinol. 2007; 193: 251–258.
  • Marzullo P., Salvadori A., Brunani A. Acylated ghrelin decreases during acute exercise in the lean and obese state. Clin. Endocrinol. 2008; 69: 970–971.
  • Nogueiras R., Tschöp M.H., Zigman J.M. Central nervous system regulation of energy metabolism: ghrelin versus leptin. Ann. NY Acad. Sci. 2008; 1126: 14–29
  • Nogueiras R., Wiedmer P., Perez-Tilve D., Veyrat-Durebex C., Keogh J.M., Sutton G.M., Pfluger P.T., Castaneda T.R., Neschen S., Hofmann S.M., Howles P.N., Morgan D.A., Benoit S.C., Szanto I, Schrott B., Schürmann A., Joost H.G., Hammond C., Hui D.Y., Woods S.C., Rahmouni K., Butler A.A., Farooqi I.S., O’Rahilly S., Rohner-Jeanrenaud F., Tschöp M.H. The central melanocortin system directly controls peripheral lipid metabolism. J. Clin. Invest. 2007; 117: 3475–3488.
  • Polińska B., Matowicka- Karna J., Kemona H. Role of ghrelin in organism. Adv. Hyg. Exp. Med. 2011; 65: 1–7
  • Rak-Mardyla A. Ghrelin role in hypothalamus – pituitary – varian axis. J. Physiol. Pharmacol. 2013; 64: 695–704.
  • Rämson R., Jürimäe J., Jürimäe T., Mäestu J. The effect of 4-week training period on plasma neuropeptide Y, leptin and ghrelin responses in male rowers. Eur. J. Appl. Physiol. 2012; 112, 1873–1880.
  • Sangiao-Alvarellos S., Varela L., Vazquez M.J., Da Boit K., Saha A.K., Cordido F., Diéguez C., López M. Influence of ghrelin and GH deficiency on AMPK and hypothalamic lipid metabolism. J. Neuroendocrinol. 2010; 22: 543–556
  • Scerif M., Kola B., Korbonits M. Ghrelin regulation of AMPK in the hypothalamus and peripheral tissues. In: Ghrelin in health and disease. Contemporary Endocrinology, eds. R.G. Smith, S.M. Thorner. New York, Humana Press, Springer Science+Business Media, 2012; 10: 91–110
  • Schneeberger M., Claret M. Recent insights into the role of hypothalamic AMPK signaling cascade upon metabolic control. Front. Neurosci. 2012; 6: 185.
  • Shiiya T., Ueno H., Toshinai K., Kawagoe T., Naito S., Tobina T., Nishida Y., Shindo M., Kangawa K., Tanaka H., Nakazato M. Significant lowering of plasma ghrelin but not des-acyl ghrelin in response to acute exercise in men. Endocrin. J. 2011; 58: 335–342
  • Stokes K.A., Sykes D., Gilbert K.L., Chen J.W., Frystyk J. Brief, high intensity exercise alters serum ghrelin and growth hormone concentrations but not IGF-I, IGF-II or IGF-I bioactivity. Growth Horm. IGF Res. 2010; 20: 289–294.
  • Theander-Carrillo C., Wiedmer P., Cettour-Rose P., Nogueiras R., Perez-Tilve D., Pfluger P., Castaneda T.R., Muzzin P., Schürmann A., Szanto I., Tschöp M.H., Rohner-Jeanrenaud F. Ghrelin action in the brain controls adipocyte metabolism. Clin. Invest. 2006; 116: 1983–1993.
  • Toshinai K., Yamaguchi H., Sun Y., Smith R.G., Yamanaka A., Sakurai T., Date Y., Mondal M.S., Shimbara T., Kawagoe T., Murakami N., Miyazato M., Kangawa K., Nakazato M. Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor. Endocrinol. 2006; 147: 2306–2314.
  • Tschöp M., Smiley D.L., Heiman M.L. Ghrelin induces adiposity in rodents. Nature 2000; 407: 908–913.
  • Tschöp M., Weyer C., Tataranni P.A., Devanarayan V., Ravussin E., Heiman M.L. Circulating ghrelin levels are decreased in human obesity. Diabetes 2001; 50: 707–709
  • Tsubone T., Masaki T., Katsuragi I., Tanaka K., Kakuma T., Yoshimatsu H. Ghrelin regulates adiposity in white adipose tissue and UCP1 mRNA expression in brown adipose tissue in mice. Reg. Peptides 2005; 130: 97–103.
  • Van der Lely A.J., Tschöp M., Heiman M.L., Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr. Rev. 2004; 25: 426–457.
  • Varela L., Vázquez M.J., Cordido F., Nogueiras R., Vidal-Puig A., Diéguez C., López M. Ghrelin and lipid metabolism: key partners in energy balance. J. Mol. Endocrinol. 2011; 46: R43–R63
  • Velásquez D.A., Martínez G., Romero A. The central sirtuin 1/p53 pathway is essential for the orexigenic action of ghrelin. Diabetes 2011; 60: 1177–1185.
  • Vestergaard E.T., Dall R., Lange K.H.W., Kjaer M., Christiansen J.S., Jorgensen J.O.L. The ghrelin response to exercise before and after growth hormone administration. J Clin Endocrinol Metab. 2007; 92: 297–303
  • Zajadacz B., Skarpańska-Stejnborn A., Brzenczek-Owczarzak W., Juszkiewicz A., Naczk M., Adach Z. The influence of physical exercise on alterations in concentrations of neuropeptyde Y, leptin and other selected hormonal and metabolic parameters in sports people. Biol. Sport 2009; 26: 309–324.
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-d0099a56-2055-448b-9863-006e4d4277a6
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.