PL EN


Preferences help
enabled [disable] Abstract
Number of results
2018 | 23 | 185 - 206
Article title

FUNCTIONAL THREE-COMPONENT POLYMERIC BIOCOMPOSITES FOR THE TREATMENT OF BEDSORES

Content
Title variants
Languages of publication
EN
Abstracts
EN
Presented here are the results of investigations into the preparation of three-component dressing materials from various biopolymers in the form of a single-layer film which is suitable as a carrier for pain-relieving (lidocaine) and bacteriostatic (sulphanilamid) therapeutic agents. Physical-chemical, biological and usable properties of the prepared materials were tested and assessed. The amount of added active substance was adopted based on the dose recommended by the Polish Pharmacopeia for external medicinal preparations. Antibacterial activity against gram (-) Escherichia coli and gram (+) Staphylococcus aureus was assessed in some of the biocomposites by quantitative methods. The cytotoxic action in direct contact with the mouse fibroblast NCTC clone 929 was also estimated. Thermal analysis (DSC), infrared spectrophotometry (FTIR) and nuclear magnetic resonance spectroscopy were employed to investigate the impact of the variable contents of chitosan, alginate, carboxymethyl cellulose (CMC), and the active substance upon the chemical- and phase-structure of the prepared three-component polymeric biocomposites. It was found that the quantitative composition of the biocomposites and the additive of active substances lidocaine and sulphanilamide exert a vital impact upon their physical-mechanical and usable properties (imbibition, absorption). Investigations into the release of the medicinal substance from the investigated biocomposites to an acceptor fluid led to the conclusion that the kinetics of the process may be described by a complex first order rate equation with two exponential functions.
Publisher

Year
Volume
23
Pages
185 - 206
Physical description
Contributors
  • Division of Functional Materials and Biomaterials, Institute of Polymers at West Pomeranian University of Technology in Szczecin
References
  • [1] Sopata M.: (2009) Etiologia i patogeneza powstawania odleżyn (Etiology and pathogenesis in the forming of bedsores), Inforanek, Nr 1(4), 4-5.
  • [2] Szewczk M.T., Cwajda. J: (2005), Opatrunki nowej generacji (New generation of dressings) , Zakażenia (Infections), 5.
  • [3] http://www.convatec.pl/download/odlezyny.pdf.
  • [4] http://www.info-med.pl/katalog/choroby/indeks/odlezyna.html.
  • [5] Rinaudo M.: (2008) Main properties and current applications of some polysaccharides as biomaterials, Polymer International , 57, 3, 397–430. DOI: 10.1002/pi.2378
  • [6] Croisier F., Jérôme Ch.: (2013), Chitosan-based biomaterials for tissue engineering, European Polymer Journal, 49, 780–792. http://dx.doi.org/10.1016/j.eurpolymj.2012.12.009
  • [7] Jayakumar R., Prabaharan M., Sudheesh Kumar P.T. i in.: (2011) Biomaterials based on chitin and chitosan in wound dressing applications, Biotechnology Advances 29, 322–337. DOI:10.1016/j.biotechadv.2011.01.005
  • [8] Eldin Mohy M.S., Soliman E.A., Hashem A.J. i in.: (2008) Chitosan Modified Membranes for Wound Dressing Applications:Preparations, Characterization and Bio-Evaluation, Trends. Biomater. Artif. Organs, 22 (3), 154-164.
  • [9] Tønnesen H.H. & Karlsen J.: (2002) Alginate in drug delivery systems, Drug Development and Industrial Pharmacy, 28(6), 621-630. https://doi.org/10.1081/DDC-120003853
  • [10] Murakami K., Aoki H., Nakamura S., Takikawa M. i in.: (2010) Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings, Biomaterials, 31, 83– 90. DOI: 10.1016/j.biomaterials.2009.09.031
  • [11] Pielesz A.: (2010) Algi i alginiany, leczenie, zdrowie, uroda (Algae and alginates ,healing, health, beauty) Wydawnictwo internetowe e-Bookow (e-book), , ISBN 978-83-61184-97-3, 43-79
  • [12] Kucharska M., Ciechańska D., Niekraszewicz A., Wiśniewska-Wrona M., Kardas I.: (2010) Potential use of chitosan – based material in medicine. Progress on Chemistry and Application of Chitin and Its Derivatives, vol. XV, 169–176
  • [13] Wiśniewska-Wrona M., Kucharska M., Niekraszewicz A., Kardas I., Ciechańska D., Bodek K.H.: (2010) Biokompozyty chitozanowo-alginianowe w postaci filmów do leczenia odleżyn (Chitosan –aliginate biocomposites in the form of films used in bedsores treatment), Polimery w medycynie (Polymers in medicine), T.40, Nr 2, 57-64.
  • [14] Farmakopea Polska XI, tom I, II, i III, PTFarm, W-wa 2017 (Polish Pharmacopeia XI ed.2017).
  • [15] Zejc A., Gorczyca M.: (2009) Chemia Leków. Podręcznik dla studentów farmacji i farmaceutyków (Chemistry of drugs. Textbook for students) Wyd. PZWL. W-wa wyd. III. Rozdz.11. Leki działające na drobnoustroje chorobotwórcze (Drugs against microbial pathogens).
  • [16] Procedura (2005) SPR/BLF/14- FTIR spektrometria w podczerwieni (Infrared spectrophotometry) , według GLP Nr. G- 016, IBWCh.
  • [17] Morcombe C.R., Zilm K.W.: (2003) Chemical shift referencing in MAS solid state NMR..J. Magn. Reson., 162, 479-486.
  • [18] Metz G., Wu X., Smith S.O.: (1994) Frequency-modulated cross-polarization for fast magic angle spinning NMR at high fields: relaxing the Hartmann-Hahn condition J. Magn. Reson. Ser. A, 110, 219-227.
  • [19] Bennett A.E., Rienstra Ch.M., Auger M. i in.: (1995) Heteronuclear decoupling in rotating solids, The Journal. Chemical. Physic,. 103,(16), 6951–6958.
  • [20] Procedura (2005 ) (Procedure) SPR/BPB/14- Oznaczanie WRV chitozanu wyjściowego i chitozanu mikrokrystalicznego (Estimation of WRV of virgin chitosan and microcrystalline chitosan), według GLP Nr. G-016, IBWCh.
  • [21] Farmakopea Polska VI, (Polish Pharmacopeia) PTFarm W-wa (2002).
  • [22] Farmakopea Polska VII, (Polish Pharmacopeia) tom I: Uwalnianie substancji czynnej z systemów transdermalnych ( Release of active substance from transdermal systems), 346-347, PTFarm W-wa (2006).
  • [23] Gierszewska-Drużyńska M., Ostrowska-Czubenko J.: (2007) Synteza i właściwości membran hydrożelowych na podstawie chitozanu oraz alginianu sodu (Synthesis and properties of hydrogel membranes based on chitosan and sodium alginate) , Polimery, 52, nr 7-8, 517- 523.
  • [24] Pourjavadi A., Barzegar Sh., Mahdavinia G.R.: ( 2006) MBA –Crosslinked Na-Alg/CMC as a smart full –polysaccharide superabsorbent hydrogel, Carbohydrate Polymers 66, 386– 395. DOI:10.1016/j.carbpol.2006.03.013
  • [25] Fraceto L.F., Pinto L. de Matos Alves., Franzoni L. i in.: (2002) Spectroscopic evidence for a preferential location of lidocaine inside phospholipid bilayers, Biophysical . Chemistry., 99 (3), 229- 243. DOI: 10.1016/S0301-4622(02)00202-8
  • [26] Leenaraj D.R., Hubert Joe I.: (2015) Natural Bond Orbital Analysis and DFT Calculation of Non- opiod Analgesic Drug Lidocaine, Materials Today: Proceedings, 2, 969 – 972. DOI: 10.1016/j.matpr.2015.06.018
  • [27] Ostrowska-Czubenko J., Gierszewska-Drużyńska M.: (2009) Effect of ionic crosslinking on the water state in hydrogel chitosan membrane, Carbohydrate Polymers, 77, 590–598. DOI: 10.1016/j.carbpol.2009.01.036
  • [28] Mucha M., Pawlak A.:.( 2005), Thermal analysis of chitosan and its blends, Thermochimica Acta 427, 69–76.
  • [29] Farmacja stosowana, M. Sznitowska, Wydawnictwo Lekarskie PZWL, W-wa, (2017 )
  • [30] Kołodyński J.: (1998) Podstawy bakteriologii (ABC of bacteriology), Wyd. Uniwersytetu Wrocławskiego, ( Editor- Univ. of Wrocław), 169-174.
  • [31] Szewczyk E.: (2007) Diagnostyka bakteriologiczna (Bacteriological diagnosis), Wyd. Naukowe PWN, 23-24.
  • [32] Yadav AV, Bhise .B: (2004) Chitosan: a potencial biomaterial effective against typhoid. Cur. Sci. 87(9), 1176-1178.
  • [33] Gadelha de Carvalho M.M.S., Montenegro Stamford T.C., Pereira dos Santos E., Tenório and F.Sampaio P.: (2011) Chitosan as an oral antimicrobial agent, Formatex
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-cea08fd2-1b59-40b4-866b-e5438d9fb784
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.