Preferences help
enabled [disable] Abstract
Number of results
2021 | 37 | 75-91
Article title

Pharmacological, Biochemical and Therapeutic Potential of Milk Thistle (Silymarin): A Review

Title variants
Languages of publication
Silymarin, a flavonolignan from the seeds of 'milk thistle' (Silybum marianum (L.) Gaertn.)), has been widely used from ancient times because of its excellent hepato-protective action. It is a mixture of mainly three flavonolignans, which are, silybin, silidianin, and silychristin, with silybin being the most active. Silymarin has been used medicinally to treat liver disorders, including acute and chronic viral hepatitis, toxin/drug-induced hepatitis, and cirrhosis and alcoholic liver diseases. It has also been reported to be effective in certain cancers. Its mechanism of action includes inhibition of hepatotoxin binding to receptor sites on the hepatocyte membrane; reduction of glutathione oxidation to enhance its level in the liver and intestine; antioxidant activity; and stimulation of ribosomal RNA polymerase and subsequent protein synthesis, leading to enhanced hepatocyte regeneration. It is orally absorbed but has very poor bioavailability due to its poor water solubility. This review focuses on the various pharmacological activities of silymarin.
Physical description
  • Biochemistry Unit, Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Oyo State, Nigeria
  • Microbiology Unit, Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Oyo State, Nigeria
  • Biochemistry Unit, Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Oyo State, Nigeria
  • Microbiology Unit, Department of Natural Sciences, Faculty of Pure and Applied Sciences, Precious Cornerstone University, Ibadan, Oyo State, Nigeria
  • [1] Kren V, Walterova D. (2005). Silybin and Silymarin – New effects and applications. Biomed Papers 149: 29-41
  • [2] Dermarderosin A. (1996). The review of natural products. 1st ed. United States of America: Facts and Comparisons.
  • [3] Gazak R, Walterova D, Kren V. (2007). Silybin and silymarin - New and emerging applications in medicine. Curr Med Chem 14: 315-338
  • [4] Tůmová L, Tůma J, Megušar K, Doleža M (2010). Substituted Pyrazinecarboxamides as Abiotic Elicitors of Flavolignan Production in Silybum marianum (L.) Gaertn Cultures in Vitro. Molecules. 15 (1): 331-340. doi:10.3390/molecules15010331
  • [5] Javed S, Kohli K, Ali M. (2011). Reassessing bioavailability of silymarin. Altern Med Rev. 16(3): 239-249
  • [6] Surai PF. (2015). Silymarin as a natural antioxidant: an overview of the current evidence and perspectives. Antioxidants 4(1): 204-247.
  • [7] Desplaces A, Choppin J, Vogel G. (1975). The effects of silymarin on experimental phalloidine poisoning. Arzneimittelforschung. 25: 89-96
  • [8] Anthony, K.; Subramanya, G.; Uprichard, S.; Hammouda, F.; Saleh, M. (2013). Antioxidant and anti‐hepatitis C viral activities of commercial milk thistle food supplements. Antioxidants 2: 23-36
  • [9] Abenavoli L, Capasso R, Milic N, Capasso F. (2010). Milkthistle in liver diseases: past, present, future. Phytother Res. 24(10): 1423-1432.
  • [10] Morazzoni P, Bombardelli E. Silybum marianum (Carduus marianus). Fitoterapia 1995; 66(1): 3-42
  • [11] Gunaratna, C. and Zhang, T. (2003). Application of liquid chromatography-electrospray ionization-ion trap mass spectrometry to investigate the metabolism of silibinin in human liver microsomes. J Chromatogr B Analyt Technol Biomed Life Sci. 794(2): 303-310. DOI: 10.1016/s1570-0232(03)00484-7
  • [12] Fintelmann, V. (1991). Modern phytotherapy and its uses in gastrointestinal conditions. Plant Med 57(7): S48-S52
  • [13] Davis-Searles P, Nakanishi Y, Nam-Cheol K, et al. (2005). Milk Thistle and Prostate Cancer: Differential Effects of Pure Flavonolignans from Silybum marianum on Antiproliferative End Points in Human Prostate Carcinoma Cells. Cancer Research. 6 (10): 4448–57. doi:10.1158/0008-5472.CAN-04-4662
  • [14] Saller R, Meier R, Brignoli R. (2001). The use of silymarin in the treatment of liver diseases. Drugs. 61(14): 2035-63.
  • [15] Pradhan SC, Girish C. (2006). Hepatoprotective herbal drug, silymarin from experimental pharmacology to clinical medicine. Indian J Med Res. 124(5): 491-504
  • [16] Lettιron P, Labbe G, Degott C, Berson A, Fromenty B, Delaforge M. (1990). Mechanism for the protective effects of silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice. Biochem Pharmacol. 39: 2027-2034
  • [17] Muriel P, Mourelle M. (1990). Prevention by silymarin of membrane alterations in acute carbon tetrachloride liver damage. J Appl Toxicol. 10: 275-279
  • [18] Sharma A, Chakraborti K. K, Handa S. S. (1991). Anti-hepatotoxic activity of some Indian herbal formulations as compared to silymarin. Fitoterapia. 62: 229-235
  • [19] Mourelle M, Franco MT. (1991). Erythrocyte defects precede the onset of carbon tetrachloride-induced liver cirrhosis: Protection by silymarin. Life Sci. 48: 1083-1090
  • [20] Mourelle M, Muriel P, Favari L, Franco T. (1989). Prevention of carbon tetrachloride-induced liver cirrhosis by silymarin. Fundam Clin Pharmacol. 3: 183-191
  • [21] Favari L, Perez-Alvarez V. (1997) Comparative effects of colchicines and silymarin on carbon tetrachloride chronic liver damage in rats. Arch Med Res 28: 11-17
  • [22] Srivastava S, Srivastava A. K, Patnaik G. K, Dhawan B. N. (1994). Effect of picroliv and silymarin on liver regeneration in rats. Indian J. Pharmacol. 26: 19-22
  • [23] Sonnenbitchler J, Goldberg M, Hane L, Madubunyi I, Vogl S, Zetl I. (1986). Stimulatory effect of silybin on the DNA synthesis in partially hepatectomized rat livers: nonresponse in hepatoma and other malignant cell lines. Biochem. Pharmacol. 35: 538-541
  • [24] Schopen R. D, Lange O. K, Panne C. (1969). Searching for a new therapeutic principle. Experience with hepatic therapeutic agent legalon. Medical Welt, 20: 888-893
  • [25] Didunyemi MO, Adetuyi BO, Oyebanjo OO (2019) Morinda lucida Attenuates Acetaminophen-Induced oxidative Damage and Hepatotoxicity in Rats. J Biomedical Sci Vol. 8 No. 2: 5
  • [26] Ramellini G, Meldolesi J. (1976). Liver protection by silymarin: In vitro effect on dissociated rat hepatocytes. Arzneimittelforschung. 26: 69-73
  • [27] Thakur S. K. (2002). Silymarin- A hepatoprotective agent. Gastroenterol. Today. 6: 78-82
  • [28] Wang M, Grange L. L, Tao J. (1996). Hepatoprotective properties of Silybum marianum herbal preparation on ethanol induced liver damage. Fitoterapia. 67: 167-171
  • [29] Pulla Reddy A, Lokesh B. R. (1996). Effect of curcumin and eugenol on iron-induced hepatic toxicities in rats. Toxicology, 107: 39-45
  • [30] Bhattacharya A, Ramanathan M, Ghosal A, Bhattacharya S.K. (2000). Effect of Withania somnifera glycowithanolides on iron-induced hepatotoxicity in rats. Phytother. Res. 14: 568-570
  • [31] Karki, P.; Lee, E.; Aschner, M. (2013). Manganese neurotoxicity: A focus on glutamate transporters. Ann. Occup. Environ. Med. 25: 4. doi: 10.1186/2052-4374-25-4
  • [32] Chtourou, Y.; Fetoui, H.; Sefi, M.; Trabelsi, K.; Barkallah, M.; Boudawara, T.; Kallel, H.; Zeghal, N. (2010). Silymarin, a natural antioxidant, protects cerebral cortex against manganese-induced neurotoxicity in adult rats. Biometals 23: 985-996
  • [33] Chtourou, Y.; Garoui, E.; Boudawara, T.; Zeghal, N. (2013). Therapeutic efficacy of silymarin from milk thistle in reducing manganese-induced hepatic damage and apoptosis in rats. Hum. Exp. Toxicol. 32: 70-81
  • [34] Chtourou, Y.; Fetoui, H.; Garoui, M.; Boudawara, T.; Zeghal, N. (2012). Improvement of cerebellum redox states and cholinergic functions contribute to the beneficial effects of silymarin against manganese-induced neurotoxicity. Neurochem. Res. 37: 469-479
  • [35] Chtourou, Y.; Garoui, M.; Boudawara, T.; Zeghal, N. (2014). Protective role of silymarin against manganese-induced nephrotoxicity and oxidative stress in rat. Environ. Toxicol. 29: 1147-1154
  • [36] Dos Santos, N.A.; Carvalho Rodrigues, M.A.; Martins, N.M.; dos Santos, A.C. (2012). Cisplatin-induced nephrotoxicity and targets of nephroprotection: An update. Arch. Toxicol. 86: 1233-1250
  • [37] Mansour, H.H.; Hafez, H.F.; Fahmy, N.M. (2006). Silymarin modulates Cisplatin-induced oxidative stress and hepatotoxicity in rats. J. Biochem. Mol. Biol. 39: 656-661
  • [38] El-Awady, el-S.E.; Moustafa, Y.M.; Abo-Elmatty, D.M.; Radwan, A. (2011). Cisplatin-induced cardiotoxicity: Mechanisms and cardioprotective strategies. Eur. J. Pharmacol. 650: 335-341
  • [39] Ninsontia, C.; Pongjit, K.; Chaotham, C.; Chanvorachote, P. (2011). Silymarin selectively protects human renal cells from cisplatin-induced cell death. Pharm. Biol. 49: 1082-1090
  • [40] Cho, S.I.; Lee, J.E.; Do, N.Y. (2014). Protective effect of silymarin against cisplatin-induced ototoxicity. Int. J. Pediatr. Otorhinolaryngol. 78: 474-478
  • [41] Kren V., Marhol P., Purchartova K., Gabrielova E., Modriansky M. (2013). Biotransformation of silybin and its congeners. Curr. Drug Metab. 14: 1009-1021. doi: 10.2174/1389200214666131118234507
  • [42] Wen, Z.; Dumas, T.E.; Schrieber, S.J.; Hawke, R.L.; Fried, M.W.; Smith, P.C. (2008). Pharmacokinetics and metabolic profile of free, conjugated, and total silymarin flavonolignans in human plasma after oral administration of milk thistle extract. Drug Metab. Dispos. 36: 65-72
  • [43] Zhu, H.J.; Brinda, B.J.; Chavin, K.D.; Bernstein, H.J.; Patrick, K.S.; Markowitz, J.S. (2013). An assessment of pharmacokinetics and antioxidant activity of free silymarin flavonolignans in healthy volunteers: A dose escalation study. Drug Metab. Dispos. 41: 1679-1685
  • [44] Wu, J.W.; Lin, L.C.; Hung, S.C.; Chi, C.W.; Tsai, T.H. (2007). Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. J. Pharm. Biomed. Anal. 45: 635-641
  • [45] Lorenz, D.; Lucker, P.W.; Mennicke, W.H.; Wetzelsberger, N. (1984). Pharmacokinetic studies with silymarin in human serum and bile. Methods Find. Exp. Clin. Pharmacol. 6: 655-661
  • [46] Barzaghi, N.; Crema, F.; Gatti, G.; Pifferi, G.; Perucca, E. (1990) Pharmokinetic studies in IdB 1016, a silybin-phosphatidylcholine complex, in healthy human subjects. Eur. J. Drug. Metab. Pharmacokinet. 15: 333-338
  • [47] Flory, P.J.; Krug, G.; Lorenz, D.; Mennicke, W.H. (1980). Studies on elimination of silymarin in cholecystectomized patients. I. Biliary and renal elimination after a single oral dose. Plant. Med. 38: 227-237
  • [48] Zhao, J.; Agarwal, R. (1999). Tissue distribution of silibinin, the major active constituent of silymarin, in mice and its association with enhancement of phase II enzymes: Implications in cancer chemoprevention. Carcinogenesis 20: 2101-2108
  • [49] Han, Y.H.; Lou, H.X.; Ren, D.M.; Sun, L.R.; Ma, B.; Ji, M. (2004). Stereoselective metabolism of silybin diastereoisomers in the glucuronidation process. J. Pharm. Biomed. Anal. 34: 1071-1078
  • [50] D’Andrea, V.; Perez, L.M.; Sanchez Pozzi, E.J. (2005). Inhibition of rat liver UDP glucuronosyltransferase by silymarin and the metabolite silibinin-glucuronide. Life Sci. 77: 683-692
  • [51] Weyhenmeyer, R.; Mascher, H.; Birkmayer, J. (1992). Study on dose-linearity of the pharmacokinetics of silibinin diastereomers using a new stereospecific assay. Int. J. Clin. Pharmacol. Ther. Toxicol. 30: 134-138
  • [52] Calani, L.; Brighenti, F.; Bruni, R. (2012) del Rio, D. Absorption and metabolism of milk thistle flavanolignans in humans. Phytomedicine 20: 40-46
  • [53] Bijak M. Silybin. (2017). A Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaernt.) - Chemistry, Bioavailability, and Metabolism. Molecules 22: 1942. doi: 10.3390/molecules22111942
  • [54] Yuan Z.W., Li Y.Z., Liu Z.Q., Feng S.L., Zhou H., Liu C.X., Liu L., Xie Y. (2018). Role of tangeretin as a potential bioavailability enhancer for silybin: Pharmacokinetic and pharmacological studies. Pharmacol. Res. 128: 153-166. doi: 10.1016/j.phrs.2017.09.019
  • [55] Jancova P., Anzenbacherova E., Papouskova B., Lemr K., Luzna P., Veinlichova A., Anzenbacher P., Simanek V. (2007). Silybin is metabolized by cytochrome P450 2C8 in vitro. Drug Metab. Dispos. 35: 2035-2039. doi: 10.1124/dmd.107.016410
  • [56] Fried M.W., Navarro V.J., Afdhal N., Belle S.H., Wahed A.S., Hawke R.L., Doo E., Meyers C.M., Reddy K.R. (2012). Effect of silymarin (milk thistle) on liver disease in patients with chronic hepatitis C unsuccessfully treated with interferon therapy: A randomized controlled trial. Jama. 308: 274-282. doi: 10.1001/jama.2012.8265
  • [57] Loguercio C., Festi D. (2011). Silybin and the liver: From basic research to clinical practice. World J. Gastroenterol. 17: 2288-2301. doi: 10.3748/wjg.v17.i18.2288
  • [58] Jancova P., Siller M., Anzenbacherova E., Kren V., Anzenbacher P., Simanek V. (2011). Evidence for differences in regioselective and stereoselective glucuronidation of silybin diastereomers from milk thistle (Silybum marianum) by human UDP-glucuronosyl transferases. Xenobiotica. 41: 743-751. doi: 10.3109/00498254.2011.573017
  • [59] Hoh C.S., Boocock D.J., Marczylo T.H., Brown V.A., Cai H., Steward W.P., Berry D.P., Gescher A.J. (2007). Quantitation of silibinin, a putative cancer chemopreventive agent derived from milk thistle (Silybum marianum), in human plasma by high-performance liquid chromatography and identification of possible metabolites. J. Agric. Food Chem. 55:2532-2535. doi: 10.1021/jf063156c
  • [60] Hoh C., Boocock D., Marczylo T., Singh R., Berry D.P., Dennison A.R., Hemingway D., Miller A., West K., Euden S. (2007). Pilot study of oral silibinin, a putative chemopreventive agent, in colorectal cancer patients: Silibinin levels in plasma, colorectum, and liver and their pharmacodynamic consequences. Clin. Cancer Res. 12: 2944-2950. doi: 10.1158/1078-0432.CCR-05-2724
  • [61] Dehmlow, C.; Erhard, J.; de Groot, H. (1996). Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology 23: 749-754
  • [62] Varga, Z.; Seres, I.; Nagy, E.; Ujhelyi, L.; Balla, G.; Balla, J.; Antus, S. (2006). Structure prerequisite for antioxidant activity of silybin in different biochemical systems in vitro. Phytomedicine. 13: 85-93
  • [63] Fu, H.; Lin, M.; Muroya, Y.; Hata, K.; Katsumura, Y.; Yokoya, A.; Shikazono, N.; Hatano, Y. (2009). Free radical scavenging reactions and antioxidant activities of silybin: Mechanistic aspects and pulse radiolytic studies. Free Radic. Res. 43: 887-897
  • [64] Yin, F.; Liu, J.; Ji, X.; Wang, Y.; Zidichouski, J.; Zhang, J. (2011). Silibinin: A novel inhibitor of Aβ aggregation. Neurochem. Int. 58: 399-403
  • [65] Cristofalo, R.; Bannwart-Castro, C.F.; Magalhães, C.G.; Borges, V.T.; Peraçoli, J.C.; Witkin, S.S.; Peraçoli, M.T. (2013). Silibinin attenuates oxidative metabolism and cytokine production by monocytes from preeclamptic women. Free Radic. Res. 47: 268-275
  • [66] Sekine, S.; Ichijo, H. (2015). Mitochondrial proteolysis: Its emerging roles in stress responses. Biochim. Biophys. Acta 1850: 274-280
  • [67] Rolo, A.P.; Oliveira, P.J.; Moreno, A.J.; Palmeira, C.M. (2003). Protection against post-ischemic mitochondrial injury in rat liver by silymarin or TUDC. Hepatol. Res. 26: 217-224
  • [68] Zhou, B.; Wu, L.J.; Tashiro, S.; Onodera, S.; Uchiumi, F.; Ikejima, T. (2006). Silibinin protects rat cardiac myocyte from isoproterenol-induced DNA damage independent on regulation of cell cycle. Biol. Pharm. Bull. 29: 1900-1905
  • [69] Detaille, D.; Sanchez, C.; Sanz, N.; Lopez-Novoa, J.M.; Leverve, X.; El-Mir, M.Y. (2008). Interrelation between the inhibition of glycolytic flux by silibinin and the lowering of mitochondrial ROS production in perifused rat hepatocytes. Life Sci. 82: 1070-1076
  • [70] Ligeret, H.; Brault, A.; Vallerand, D.; Haddad, Y.; Haddad, P.S. (2008). Antioxidant and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion liver injury. J. Ethnopharmacol. 115: 507-514
  • [71] Gabrielová, E.; Jabůrek, M.; Gažák, R.; Vostálová, J.; Ježek, J.; Křen, V.; Modrianský, M. (2010). Dehydrosilybin attenuates the production of ROS in rat cardiomyocyte mitochondria with an uncoupler-like mechanism. J. Bioenerg. Biomembr. 42: 499-509
  • [72] Grattagliano, I.; Diogo, C.V.; Mastrodonato, M.; de Bari, O.; Persichella, M.; Wang, D.Q.; Liquori, A.; Ferri, D.; Carratù, M.R.; Oliveira, P.J. (2013). A silybin-phospholipids complex counteracts rat fatty liver degeneration and mitochondrial oxidative changes. World J. Gastroenterol. 19: 3007-3017
  • [73] Serviddio, G.; Bellanti, F.; Giudetti, A.M.; Gnoni, G.V.; Petrella, A.; Tamborra, R.; Romano, A.D.; Rollo, T.; Vendemiale, G.; Altomare, E. A. (2010). Silybin-phospholipid complex prevents mitochondrial dysfunction in a rodent model of nonalcoholic steatohepatitis. J. Pharmacol. Exp. Ther. 332: 922-932
  • [74] Mazzio, E.A.; Harris, N.; Soliman, K.F. (1998). Food constituents attenuate monoamine oxidase activity and peroxide levels in C6 astrocyte cells. Plant. Med. 64: 603-606
  • [75] Zhu, S.Y.; Dong, Y.; Tu, J.; Zhou, Y.; Zhou, X.H.; Xu, B. (2014). Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose. Pharmacogn. Mag. 10: S92-S99
  • [76] Geed, M.; Garabadu, D.; Ahmad, A.; Krishnamurthy, S. (2014). Silibinin pretreatment attenuates biochemical and behavioral changes induced by intrastriatal MPP+ injection in rats. Pharmacol. Biochem. Behav. 117: 92-103
  • [77] Dehmlow, C.; Murawski, N.; de Groot, H. (1996). Scavenging of reactive oxygen species and inhibition of arachidonic acid metabolism by silibinin in human cells. Life Sci. 58: 1591-1600
  • [78] Sangeetha, N.; Viswanathan, P.; Balasubramanian, T.; Nalini, N. (2012). Colon cancer chemopreventive efficacy of silibinin through perturbation of xenobiotic metabolizing enzymes in experimental rats. Eur. J. Pharmacol. 674: 430-438
  • [79] Tuorkey, M.J.; El-Desouki, N.I.; Kamel, R.A. (2015). Cytoprotective Effect of Silymarin against Diabetes-Induced Cardiomyocyte Apoptosis in Diabetic Rats. Biomed. Environ. Sci. 28: 36-43
  • [80] Fan, L.; Ma, Y.; Liu, Y.; Zheng, D.; Huang, G. (2014). Silymarin induces cell cycle arrest and apoptosis in ovarian cancer cells. Eur. J. Pharmacol. 743: 79-88
  • [81] Xu P., Zhou H., Li Y.Z., Yuan Z.W., Liu C.X., Liu L., Xie Y. (2018). Baicalein Enhances the Oral Bioavailability and Hepatoprotective Effects of Silybin through the Inhibition of Efflux Transporters BCRP and MRP2. Front. Pharm. 9: 1115. doi: 10.3389/fphar.2018.01115
  • [82] Rickling, B.; Hans, B.; Kramarczyk, R.; Krumbiegel, G.; Weyhenmeyer, R. (1995). Two high-performance liquid chromatographic assays for the determination of free and total silibinin diastereomers in plasma using column switching with electrochemical detection and reversed-phase chromatography with ultraviolet detection. J. Chromatogr. B Biomed. Appl. 670: 267-277
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.