Preferences help
enabled [disable] Abstract
Number of results
2016 | 39 | 17-30
Article title

Electricity Generation & Other Applications using Microbial Fuel Cell

Title variants
Languages of publication
A Microbial Fuel Cell is a device where the bacteria can grow on one electrode, they breakdown organic matter and release electrons from it. The bacteria can do this by keeping them separate from the oxygen, and when they release those electrons it creates a potential between the two electrodes of about half a volt and voltage times current is power, and that is how power is generated from it. But MFCs are not restricted to generating power they can also be used to produce biofuels. Process can also be used to extract hydrogen and methane using appropriate membrane between the anode and cathode. Given paper explores this spectrum of scenarios and speculates the possibility of generating power using the Himalayan top soil.
Physical description
  • Department of Electrical, Power & Energy Engineering, College of Engineering Studies (COES), University of Petroleum & Energy Studies, Dehradun, India
  • Department of Electrical, Power & Energy Engineering, College of Engineering Studies (COES), University of Petroleum & Energy Studies, Dehradun, India
  • [1] Sopian. K, A.H Shamsuddin, T.N. Veziroglu, “Solar hydrogen energy option for Malaysia Proceeding of the International Conference on advances in strategic technology, June 1995”, UKM, Bangi (1995) 209-220.
  • [2] Kordesch, K.V., G.R. SImader. “Environmental impact of fuel cell technology”. Chem. Rev. 95 (1995) 191-207.
  • [3] Barbir, F., “PEM fuel cells: Theory and practice”, California: Elsevier Academic Press, (2005).
  • [4] Jessica, Li., “An Experimental Study of Microbial Fuel Cells for Electricity Generating: Performance Characterization and Capacity Improvement”, Journal of Sus. Bioenergy Systems, 3 (2013) 171-178.
  • [5] Barua, P., Deka, D., International Journal of Energy, Information and Communications Vol. 1, Issue 1, November, 2010.
  • [6] Hwang, M.H., Jang, N.J., Hyun, S.H., Kim, I.S., Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH., J. Biotechnol. 111, 2004, 297-309.
  • [7] Sisler F. D., Biochemical Fuel Cells, in Progress in Industrial Microbiology, D. J. D. Hockenhull (Ed), J. & A. Churchill, London, Vol. 9, 1971, 1-11.
  • [8] Turner A. P. F., W. J. Aston, I. J. Higgins, G. Davis and H. A. O. Hill, Applied Aspects of Bioelectrochemistry: Fuel Cells, Sensors, and Bioorganic Synthesis, in Fourth Symposium on Biotechnology in Energy Production and Conservation, C. D. Scott (Ed), Interscience, New York, 401, 1982.
  • [9] Palmore G. T. R. and G. M. Whitesides, Microbial and Enzymatic Biofuel Cells in Enzymatic Conversion of Biomass for Fuels Production, M. E. Himmel, J. O. Baker and R. P. Overend (Eds), ACS Symposium Series No. 566, American Chemical Society, Washington, DC, 1994, 271-290.
  • [10] Bartlett P. N., P. Tebbutt and R. C. Whitaker, Kinematic Aspects of the Use of Modified Electrodes and mediators in bio-electrochemistry, Prog. Reaction Kinetics, Vol. 16, 1991, 55-155.
  • [11] Katz Eugenii, Andrew N. Shipway and Itamar Willner, Biochemical fuel cells in Handbook of Fuel Cells – Fundamentals, Technology and Applications, Volume 1, Fundamentals and Survey of Systems, Vielstich Wolf, Hubert A. Gasteiger and Arnold Lamm; ( Ed.), John Wiley & Sons, Ltd., 2003.
  • [12] Suzuki S. and I. Karube, Energy Production With Immobilized. Cells, Appl. Biochem. Bioeng., Vol. 4, 1983, 281-310.
  • [13] Karube I, S. Suzuki, T. Matunaga and S. Kuriyama, Bio- chemical energy conversion by immobilized whole cells, Ann. N.Y. Acad. Sci., Vol. 369, 1981, 91-98.
  • [14] Suzuki S, I. Karube, T. Matsunaga, S. Kuriyama, N. Suzuki, T. Shirogami and T. Takamura, Biochemical energy conversion using immobilized whole cells of Clostridium butyric, Biochimie, Vol. 62, 1980, 353-358.
  • [15] Suzuki S., I. Karube, H. Matsuoka, S. Ueyama, H. Kawakubo, S. Isoda and T. Murahashi, Biochemical energy conversion by immobilized whole cells, Ann. N.Y. Acad. Sci., Vol. 413, 1983, 133-143.
  • [16] Cooney M. J., E. Roschi, I. W. Marison, C. Comniellis and U. von Stockar, Physiologic Studies with the Sulphate Reducing Bacterium – Desulfovibrio desulfuricans : Evaluation for Use in a Biofuel Cell, Enzyme Microbiol. Technol., Vol. 18, 1996, 358-365.
  • [17] Habermann, W. & E. H. Pommer, Biological fuel cells with sulphide storage capacity, Appl. Microbiol. Biotechnol. Vol. 35, 1991, 128-133.
  • [18] Roller S. D., H. P. Bennetto, G. M. Delaney, J. R. Mason, S. L. Stirling and C. F. Thurston, Electron Transfer Coupling in Microbial Fuel Cells : 1. Comparison of Redox Mediator Reduction Rates and Respiratory Rates of Bacteria, J. Chem. Technol. Biotechnol., Vol. 34, Issue 1, 1984, 3-12.
  • [19] Bennetto, H. P., Stirling, J. L., Tanaka, K. and Vega C. A., Anodic Reaction in Microbial Fuel Cells, Biotechnology and Bioengineering, Vol. 25, 1983, 559-568
  • [20] Vega C. A. and I. Fernandez, Mediating Effect of Ferric Chelate Compounds in Microbial Fuel Cells with Lactobacillus plantarum, Streptococcus lactis and Erwinia dissolvens, Bioelectrochem. Bioeng., Vol. 17, 1987, 217-222.
  • [21] Lithgow A. M., L. Romero, I. C. Sanchez, F. A. Souto and C. A. Vega, Interception of electron-transport chain in bacteria with hydrophilic redox mediators, J. Chem. Res., Synop., Vol. 5, 1986, 178-179.
  • [22] Sell D., P. Kramer and G. Kreysa, Use of an Oxygen Gas – Diffusion Cathode and a 3 – Dimensional Packed – Bed Anode in a Bioelectrochemical Fuel Cell, Appl. Microbiol Biotechnol., Vol. 31, 1989, 211-213.
  • [23] Allen M. J., The electrochemical aspects of some biochemical systems-IX. The anomalous behaviour of E.coli with mixed substrates, Electrochim. Acta, Vol. 11, 1966, 1503-1508.
  • [24] Aston W. J. and A. P. F. Turner, Biosensors and Biofuel Cells, Biotechnol. Gen. Eng. Rev., Vol. 1, 1984, 89-120.
  • [25] Yahiro A. T., S. M. Lee and D. O. Kimble, Bioelectrochemistry I, Enzyme Utilizing Biofuel Cell Studies, Biochim. Biophys. Acta, Vol. 88, 1964, 375-383.
  • [26] Willner I. and B. Willner, Biomaterials integrated with electronic elements: enroute to bioelectronics. Trends Biotechnol. Trends Biotechnol., Vol. 19, 2001, 222-230.
  • [27] Ruzgas T., E. Csoregi, J. Emneus, L. Gorton and G. Marko- Varga, Peroxidase-Modified Electrodes: Fundamentals and Applications, Anal. Chim. Acta, Vol. 330, 1996, 123-138.
  • [28] Klibanov A. M., Enzymatic Catalysis in Anhydrous Organic Solvents, Trends Biochem. Sci., Vol. 14, 1989, 141-144.
  • [29] Li J., S. N. Tan and J. T. Oh, Silica sol-gel immobilized amperometric enzyme electrode for peroxide determination in the organic phase. J. Electroanal. Chem., Vol. 448, Issue 1, 1998, 69-77.
  • [30] Yang L. and R. W. Murray, Spectrophotometric and electrochemical kinetic studies of poly (ethylene glycol)-modified horseradish peroxidase reactions in organic solvents and aqueous buffers, Anal. Chem., Vol. 66, 1994, 2710
  • [31] Tsujimura S., H. Tatsumi, J. Ogawa, S. Shimizu, K. Kano and T. Ikeda, Bioelectrocatalytic reduction of dioxygen to water at neutral pH using bilirubin oxidase as an enzyme and 2, 2 -azinobis (3- ethylbenzothiazolin-6-sulfonate) as an electron transfer mediator, J. Electroanal. Chem., Vol. 496, 2001, 69-75.
  • [32] Tayhas G., R. Palmore and H.H. Kim, Electro-Enzymatic Compartment of a Biofuel Cell, J. Electroanal. Chem., Vol. 464, 1999, 110-117.
  • [33] Willner I., V. Heleg-Shabtai, R. Blonder, E. Katz, G. Tao, A. F. Buckmann and A. Heller, Electrical Wiring of Glucose Oxidase by Reconstitution of FAD – Modified Monolayers Assembled onto U-Electrodes, J. Am. Chem. Soc., Vol. 118, 1996, 10321-10322
  • [34] Katz E., A. Riklin, V. Heleg-Shabtai, I. Willner and A. F. Buckmann, Glucose Oxidase Electrodes via Reconstitution of the Apo-Enzyme: Tailoring of Novel Glucose Biosensors, Anal. Chim. Acta, Vol. 385, 1999, 45-58.
  • [35] Willner I., E. Katz, F. Patolsky and A. F. Buckmann, A Biofuel Cell Based on Glucose Oxidase and Microperoxidase -11 Monolayer –Functionalized Electrodes, J. Chem. Soc., Perkin Trans. Vol. 2, 1998, 1817-1822.
  • [36] Volkov A. G. and D. W. Deamer, Liquid/Liquid Interface Theory and Methods, CRC, Boca Raton, FL, 1996.
  • [37] Katz E., B. Filanovsky and I. Willner, A biofuel cell based on two immiscible solvents and glucose oxidase and microperoxidase-11 monolayer-functionalized electrodes, New J. Chem., Vol. 23, 1999, 481-487.
  • [38] Rosenbaum M., Zhao F., Schroder U., and Scholz F., Interfacing Electrocatalysis and Biocatalysis with Tungsten Carbide: A High-Performance, NobleMetal-Free Microbial Fuel Cell, Angew. Chem. 2006, 118, 1-4.
  • [39] Liu, Z., et al. (2013). "A semi-automated genome annotation comparison and integration scheme." BMC Bioinformatics 14: 172.
  • [40] Yunjun Yan, Yu Xue; Introduction
  • [41] Technology Update,
  • [42] Fuel Cells 2000,
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.