PL EN


Preferences help
enabled [disable] Abstract
Number of results
2016 | 57 | 289-299
Article title

A new approach to porous PEO coating sub-layers determination on the basis of GDOES signals

Content
Title variants
Languages of publication
EN
Abstracts
EN
In present work, an approach to porous PEO coating sub-layers determination on the basis of Glow-Discharge Optical Emission Spectroscopy (GDOES) measurements, is presented. CP Titanium Grade 2 was used for the study. By interpreting the depth profiles obtained by GDOES, the Authors could reveal boundaries of zones with specific features in the obtained coating. This way the porous PEO coating can be divided into different sub-layers. The use of the first and second derivatives of hydrogen, phosphorus and titanium signals in the GD profiles allowed to determine these sub-layers, with results shown in that article.
Year
Volume
57
Pages
289-299
Physical description
Contributors
  • Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Racławicka Str., PL 75-620 Koszalin, Poland, rokosz@tu.koszalin.pl
  • Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Racławicka Str., PL 75-620 Koszalin, Poland, Tadeusz.Hryniewicz@tu.koszalin.pl
author
  • Division of Bioengineering and Surface Electrochemistry, Department of Engineering and Informatics Systems, Koszalin University of Technology, 15-17 Racławicka Str., PL 75-620 Koszalin, Poland, lukasz.dudek@tu.koszalin.pl
References
  • [1] Hryniewicz T, Physico-chemical and technological fundamentals of electropolishing steels (Fizykochemiczne i technologiczne podstawy procesu elektropolerowania stali), 1989, Monograph no. 26, Koszalin University of Technology Publishing House; 161 pages.
  • [2] Hryniewicz T, On the surface treatment of metallic biomaterials (Wstęp do obróbki powierzchniowej biomateriałów metalowych), 2007, Koszalin University of Technology Publishing House.
  • [3] Hryniewicz T, Rokosz K, Zschommler Sandim HR, SEM/EDX and XPS studies of niobium after electropolishing. Applied Surface Science, 263 (2012) 357-361.
  • [4] Rokicki R, Hryniewicz T, Enhanced oxidation-dissolution theory of electropolishing, Transactions of The Institute of Metal Finishing, 90 (2012) 188-196.
  • [5] Rokosz K, Electrochemical Polishing in magnetic field (Polerowanie elektrochemiczne w polu magnetycznym), 2012, Koszalin University of Technology Publishing House, 211 pages.
  • [6] Hryniewicz T, Rokicki R, Rokosz K, Co-Cr alloy corrosion behaviour after electropolishing and "magnetoelectropolishing" treatments. Surface and Coatings Technology, 62(17-18) (2008) 3073-3076.
  • [7] Hryniewicz T, Rokosz K, Analysis of XPS results of AISI 316L SS electropolished and magneto-electropolished at varying conditions. Surface and Coatings Technology, 204(16-17) (2010) 2583-2592.
  • [8] Hryniewicz T, Rokicki R, Rokosz K, Magnetoelectropolishing for metal surface modification. Transactions of The Institute of Metal Finishing, 85(6) (2007) 325-332.
  • [9] Hryniewicz T, Rokicki R, Rokosz K, Corrosion and surface characterization of titanium biomaterial after magnetoelectropolishing. Surface and Coatings Technology, 203(9) (2008) 1508-1515.
  • [10] Hryniewicz T, Rokosz K, Polarization characteristics of magnetoelectropolishing stainless steels. Materials Chemistry and Physics, 122(1) (2010) 169-174.
  • [11] Rokosz K, Hryniewicz T, Raaen S, Characterization of passive film formed on AISI 316L stainless steel after magnetoelectropolishing in a broad range of polarization parameters. Steel Research International, 83(9) (2012) 910-918.
  • [12] Hryniewicz T, Rokosz K, Highlights of magnetoelectropolishing, Frontiers in Materials: Corrosion Research, 1(3) (2014) 1-7 (Inaugural Article); DOI: 10.3389/fmats.2014.00003.
  • [13] Hryniewicz T, Rokosz K, Investigation of selected surface properties of AISI 316L SS after magnetoelectropolishing. Materials Chemistry and Physics, 123(1) (2010) 47-55.
  • [14] Hryniewicz T, Rokosz K, Corrosion resistance of magnetoelectropolished AISI 316L SS biomaterial. Anti-Corrosion Methods and Materials, 61(2) (2014) 57-64.
  • [15] Hryniewicz T, Rokosz K, Valiček J, Rokicki R, Effect of magnetoelectropolishing on nanohardness and Young’s modulus of titanium biomaterial. Materials Letters, 83 (2012) 69-72.
  • [16] Hryniewicz T, Rokosz K, Rokicki R, Prima F, Nanoindentation and XPS Studies of Titanium TNZ Alloy after Electrochemical Polishing in a Magnetic Field. Materials, 8 (2015) 205-215.
  • [17] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analysis of passive layers composition formed on AISI 304 L SS after standard and high-current density electropolishing. Surface and Interface Analysis, 47(1) (2015) 87-92.
  • [18] Rokosz K, Lahtinen J, Hryniewicz T, Rzadkiewicz S, XPS depth profiling analysis of passive surface layers formed on austenitic AISI 304L and AISI 316L SS after high-current-density electropolishing. Surface and Coatings Technology, 276 (2015) 516-520.
  • [19] Rokosz K, Hryniewicz T, Simon F, Rzadkiewicz S, Comparative XPS analyses of passive layers composition formed on duplex 2205 SS after standard and high-current-density electropolishing. Tehnicki vjesnik - Technical Gazette, 23(3) (2016) 731-735.
  • [20] Rokosz K, Hryniewicz T, Raaen S, Development of Plasma Electrolytic Oxidation for improved Ti6Al4V biomaterial surface properties. The International Journal of Advanced Manufacturing Technology, 85 (2016) 2425-2437; DOI: 10.1007/s00170-015-8086-y.
  • [21] Rokosz K., Hryniewicz T, Raaen S, Chapon P, Investigation of porous coatings obtained on Ti-Nb-Zr-Sn alloy biomaterial by Plasma Electrolytic Oxidation: Characterisation and Modelling. The International Journal of Advanced Manufacturing Technology, 2016; DOI 10.1007/s00170-016-8692-3
  • [22] Rokosz K, Hryniewicz T, Raaen S, Chapon P, Development of copper-enriched porous coatings on ternary Ti-Nb-Zr alloy by Plasma Electrolytic Oxidation. The International Journal of Advanced Manufacturing Technology, 2016, DOI 10.1007/s00170-016-9206-z
  • [23] Rokosz K, Hryniewicz T, Dudek Ł, Matysek D, Valiček J, Harničarova M, SEM and EDS Analysis of Surface Layer Formed on Titanium After Plasma Electrolytic Oxidation in H3PO4 with the Addition of Cu(NO3)2. Journal of Nanoscience and Nanotechnology, 16 (2016) 7814-7817.
  • [24] Rokosz K, Hryniewicz T, Dalibor M, Raaen S, Valiček J, Dudek Ł, Harničarova M, SEM, EDS and XPS Analysis of the Coatings Obtained on Titanium after Plasma Electrolytic Oxidation in Electrolytes Containing Copper Nitrate. Materials, 9(318) (2016) 1-12; DOI:10.3390/ma9050318.
  • [25] Rokosz K, Hryniewicz T, Raaen S, Chapon P, Dudek Ł, GDOES, XPS and SEM with EDS analysis of porous coatings obtained on Titanium after Plasma Electrolytic Oxidation. Surface and Interface Analysis, 2016; DOI 10.1002/sia.6136
  • [26] Gnedenkov SV, Sharkeev YP, Sinebryukhov SL, Khrisanfova OA, Legostaeva EV, Zavidnaya AG, Puz’ AV, Khlusov IA, Opra DP, Functional coatings formed on the titanium and magnesium alloys as implant materials by plasma electrolytic oxidation technology: fundamental principles and synthesis conditions. Corrosion Review, 34(1-2) (2016) 65-83.
  • [27] Simka W, Sadowski A, Warczak M, Iwaniak A, Dercz G, Michalska J, Maciej A, Modification of titanium oxide layer by calcium and phosphorus. Electrochimica Acta, 56(24) (2011) 8962-8968.
  • [28] Han Y, Hong SH, Xu KW (2002) Synthesis of nanocrystalline titania films by micro-arc oxidation. Materials Letters, 56 (2002) 744-747.
  • [29] Han Y, Hong SH, Xu KW, Structure and in vitro bioactivity of titania-based films by micro-arc oxidation. Surface and Coatings Technology, 168 (2003) 249-258.
  • [30] Fei C, Hai Z, Chen C, Yangjian X, Study on the tribological performance of ceramic coatings on titanium alloy surfaces obtained through microarc oxidation. Progress in Organic Coatings, 64 (2009) 264-267.
  • [31] Aliasghari S, Plasma Electrolytic Oxidation of Titanium. PhD Thesis of Faculty of Engineering and Physical Sciences, The University of Manchester, School of Materials, 2014, 223 pages.
  • [32] Teh TH, Berkani A, Mato S, Skeldon P, Thompson GE, Habazaki H, Shimizu K (2003) Initial stages of plasma electrolytic oxidation of titanium. Corrosion Science, 45 (2003) 2757-2768.
  • [33] Krząkala A, Mlynski J, Dercz G, Michalska J, Maciej A, Nieuzyla L, Simka W, Modification of Ti-6Al-4V alloy surface by EPD-PEO process in ZrSiO4 suspension. Archives of Metallurgy and Materials, 59(1) (2014) 199-204.
  • [34] Simka W, Nawrat G, Chlode J, Maciej A, Winiarski A, Szade J, Radwanski K, Gazdowicz J, Electropolishing and anodic passivation of Ti6Al7Nb alloy. Przemysł Chemiczny, 90(1) (2011) 84-90.
  • [35] Wang Y, Jiang B, Lei T, Guo L, Dependence of growth features of microarc oxidation coatings of titanium alloy on control modes of alternate pulse. Materials Letters, 58 (2004) 1907-1911.
  • [36] Pulsed RF Glow Discharge Optical Emission Spectrometry - Ultra Fast Elemental Depth Profiling, HORIBA Scientific, Printed in France  ©HORIBA Jobin Yvon: 2014, 7 pages. http://www.horiba.com/scientific/products/atomic-emission-spectroscopy/glow-discharge/ (accessed 29 March 2016).
  • [37] DiP: Differential Interferometry Profiling. Printed in France  ©HORIBA Jobin Yvon, 2015, 10: 1-4. http://www.horiba.com/fileadmin/uploads/Scientific/Documents/GDS/HJY_BRO_GDOES_DiP.pdf (accessed on 1 October 2016).
Document Type
article
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.psjd-ccd13cce-af20-4768-a937-e5cfbc0619a0
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.